Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Механико-математический факультет

УТВЕРЖДАЮ:

06

Декан

Л. В.Гензе

(30)»

20<u>2</u>Z r

Рабочая программа дисциплины

Методы параллельных вычислений

по направлению подготовки

01.04.01 Математика

Направленность (профиль) подготовки : Фундаментальная математика

Форма обучения Очная

Квалификация **Магистр**

Год приема **2022**

Код дисциплины в учебном плане: Б1.В.З.ДВ.03.02

согласовано:

Руководитель ОП

П.А.Крылов

Председатель УМК

Е.А.Тарасов

Томск - 2022

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен формулировать и решать актуальные и значимые проблемы математики.

ПК-1 Способен самостоятельно решать исследовательские задачи в рамках реализации научного (научно-технического, инновационного) проекта.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 1.1 Формулирует поставленную задачу, пользуется языком предметной области, обоснованно выбирает метод решения задачи.

ИПК 1.1 Проводит исследования, направленные на решение отдельных исследовательских задач

2. Задачи освоения дисциплины

- Освоить методы параллельных вычислений применительно к численному решению дифференциальных уравнений.
- Научиться применять полученные навыки для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Второй семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Математический анализ, Дифференциальные уравнения, Численные методы, Программирование, Технологии параллельного программирования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Решение систем ОДУ

Параллельные алгоритмы решения задачи Коши для системы обыкновенных дифференциальных уравнений. Метод последовательных приближений Пикара. Параллельная реализация метода Рунге-Кутты. Многошаговые методы Адамса. Схема предиктор-корректор.

Тема 2. Решение краевых задач для уравнений в частных производных

Решение краевых задач для уравнений в частных производных. Параллельная реализация итерационных методов решения СЛАУ: Якоби, Зейделя, верхней релаксации. Параллельные алгоритмы решения задач нестационарной теплопроводности с помощью явных и не явных разностных схем

Тема 3.

Информационная структура алгоритмов. Параллельные алгоритмы Штрассена и Винограда. Параллельный алгоритм нахождения коэффициентов характеристического многочлена методом Леверье. Сгущение разностных сеток. Виды и критерии качества сеток. Вектор Фидлера. Матрица смежности орграфа и ее свойства. Ациклический орграф. Параллельный алгоритм Флойда для поиска кратчайших путей. Параллельные алгоритмы расчета теплового состояния стержневых систем. Параллельный алгоритм кратномасштабного вейвлет-анализа сигналов. Сортировка слиянием. Метод Монте-Карло для задачи Дирихле.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, деловых игр по темам, выполнения домашних заданий, ..., и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен во втором семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Первая часть содержит один вопрос, проверяющий ИОПК 1.1. Ответ на вопрос второй части дается в развернутой форме..

Вторая часть содержит один вопрос, проверяющий ИПК-1.1. Ответ на вопрос второй части дается в развернутой форме.

Третья часть содержит 2 вопроса, проверяющих ИПК 1.1 и оформленные в виде практических задач. Ответы на вопросы третьей части предполагают решение задач и краткую интерпретацию полученных результатов.

Примерный перечень теоретических вопросов

- 1. Параллельная реализация явного метода Эйлера для решения систем ОДУ на основе декомпозиции по данным. Теоретическая оценка ускорения и эффективности.
- 2. Явная разностная схема для уравнений теплопроводности и ее параллельная реализация с использованием двумерной декомпозиции. Теоретические оценки ускорения и эффективности.
- 3. Параллельная реализация одношагового метода Рунге-Кутты четвертого порядка для решения систем ОДУ на основе декомпозиции по данным. Теоретическая оценка ускорения и эффективности.
- 4. Явная разностная схема для уравнения теплопроводности и ее параллельная реализация с использованием одномерной декомпозиции. Теоретические оценки ускорения и эффективности.
- 5. Метод Якоби для решения разностной задачи Дирихле для уравнения Пуассона в прямоугольнике и его параллельная реализация с использованием одномерной и двумерной декомпозиции. Сравнительный анализ способов декомпозиции сеточной области.
- 6. Метод Зейделя и верхней релаксации для решения разностной задачи Дирихле для уравнения Пуассона в прямоугольнике и его параллельная реализация. Красно-черное упорядочивание узлов сетки. Теоретическая оценка ускорения и эффективности.

- 7. Метод Зейделя и верхней релаксации для решения разностной задачи Дирихле для уравнения Пуассона в прямоугольнике и его параллельная реализация. Асинхронный подход. Теоретическая оценка ускорения и эффективности.
- 8. Постановка задачи решения систем ОДУ. Области применения. Основные подходы построения параллельных алгоритмов для решения систем ОДУ.
- 9. Численное решение задачи Дирихле для уравнения Пуассона в прямоугольнике с помощью метода конечных разностей. Построение разностной схемы. Обзор методов решения сеточных уравнений и их сравнительный анализ.
- 10. Численное решение задачи нестационарной теплопроводности с помощью явных и неявных разностных схем. Построение разностных схем.
 - 11. Информационная структура алгоритмов.
 - 12. Алгоритм Штрассена.
- 13. Параллельный алгоритм нахождения коэффициентов характеристического многочлена.
 - 14. Критерии качества сеток.
 - 15. Вектор Фидлера.
 - 16.Параллельный алгоритм Флойда.
 - 17. Свойства степеней матрицы смежности орграфа.

Примеры задач:

- 1. Реализовать параллельный алгоритм решения задачи Коши для системы обыкновенных дифференциальных уравнений, в которой матрица является нижнетреугольной с единичными ненулевыми элементами. В качестве начальных условий принять $y_i(0) = 1$, i = 1, n. Для обеспечения равномерной загрузки процессоров применить циклическую схему распределения подзадач по процессам. Решить задачу методом Пикара и методом многошаговым методом Адамса.
- 2. Численно решить задачу нестационарной теплопроводности на вычислительном кластере с использованием явной разностной схемы и одномерной декомпозиции сеточной области.

$$\frac{\partial u}{\partial t} = a \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), t > 0, 0 < x > 10, 0 < y < 10;$$

$$t = 0 : u = 0; a = 10^{-3}$$

$$x = 0 : \frac{\partial u}{\partial x} = u; x = 10 : \frac{\partial u}{\partial x} = -u$$

$$y = 0 : u = 100; y = 10 : u = 100.$$

Разработать численный метод решения задачи (исследовать аппроксимацию, устойчивость полученной разностной схемы). Определить значение температуры в центре области через 30 секунд. Написать и отладить параллельную программу. Исследовать ускорение и эффективность параллельной программы. В расчетах использовать сетку размером 200х200 узлов.

- 3. Найти характеристический многочлен графа K_5 и его вектор Фидлера.
- 4. Написать программу вычисления степеней матрицы смежности A^n , n=1,2,4,8 используя блочный алгоритм умножения матриц для четырех процессоров.
 - 5. Методом Леверье получить характеристический многочлен матрицы смежности A графа G, используя блочный алгоритм умножения матриц для четырех процессоров. Найти обратную матрицу A^{-1} . Проверить $A \cdot A^{-1} = E$.
 - 6. Для орграфа с матрицей примыканий A, найти расстояния по однопроцессорному алгоритму Флойда.

7. Для орграфа с матрицей примыканий A, найти расстояния по парралельному алгоритму Флойда.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

При ответе на вопросы оценивается полнота и точность ответа, логичность и аргументированность изложения материала, умения использовать в ответе фактический материал. Итоговая оценка выставляется с учетом суммы оценок за выполнение индивидуальных работ и оценки экзамена.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=9322
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Старченко А. В. Методы параллельных вычислений : [учебник] / А. В. Старченко, В. Н. Берцун ; Том. гос. ун-т. Томск : Изд-во Томского ун-та, 2013. 224 с. http://math.tsu.ru/sites/default/files/mmf2/e-resources/parallel%20comp%20meth.pdf
- Практикум по методам параллельных вычислений: [учебник] / А. В. Старченко, Е. А. Данилкин, В. И. Лаева, С. А. Проханов; под ред. А. В. Старченко; Томский гос. ун-т; Суперкомпьютерный консорциум ун-тов России. М.: Изд-во Московского университета, 2010. 199 с. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000421177
- Гергель В. П. Высокопроизводительные вычисления для многопроцессорных много-ядерных систем : [учебник] / В. П. Гергель ; Б-ка Нижегор. гос. ун-та им. Н. И. Лобачев-ского ; Суперкомпьютерный консорциум ун-тов России. М. : Физматлит [и др.], 2010.-539 с.
- Линев А. В. Технологии параллельного программирования для процессоров новых ар-хитектур: [учебник] / А. В. Линев, Д. К. Боголепов, С. И. Бастраков; под ред. В. П. Герге-ля; Нижегородский гос. ун-т им. Н. И. Лобачевского; [Суперкомпьютерный консорциум университетов России]. М.: Изд-во Московского университета, 2010. 148 с.
- Высокопроизводительные вычисления на кластерах. Томск: Изд-во Том. Ун-та, 2008. 198 с. http://math.tsu.ru/sites/default/files/mmf2/e-resources/parallel.pdf
- Саад Ю. Итерационные методы для разреженных линейных систем : в 2 т. Т. 1 / Юсе-фСаад ; пер. с англ. Х. Д. Икрамова. 2-е изд. М. : Изд-во Московского университета, 2013.-321 с.
- Берцун В. Н. Математическое моделирование на графах. Ч.2: Томск: Изд. во Томского университета, 2013. ч. II. –86 с.
- Воеводин В. В. Вычислительная математика и структура алгоритмов. –М: МГУ, 2010. 168с.
- Асанов М. О. Дискретная математика: графы, матроиды, алгоритмы : учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин.—изд. 2-е, испр. и доп. СПб. [и др.] : Лань, 2010. 362 с.
 - -Grossman A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape // SIAM J. Math. 1984 P. 723–736.
 - -Чуи Ч. Введение в вейвлеты. Москва: Мир, 2001. 412 с.
 - -Добеши И. Десять лекций по вейвлетам. Москва: РХД, 2001

- б) дополнительная литература:
- Хокни, Джесхоуп. Параллельные ЭВМ. М.: Радио и связь, 1986.
- Ортега Дж. Введение в параллельные и векторные методы решения линейных систем. М.: Мир, 1991.
 - Фадеева В.Н., Фадеев Д.К. Параллельные вычисления в линейной алгебре.
 - Воеводин В.В. Математические модели и методы в параллельных процессах.
- Гергель В.П., Стронгин Р.Г. Основы параллельных вычислений для многопроцессор-ных вычислительных систем. Нижний Новгород: ННГУ, 2002. 122с.
- Воеводин В.В., Воеводин Вл. В. Параллельные вычисления. -СПб: БХВ Петербург, 2002. -608 с.
 - 1. Дьяконов В.П. Вейвлеты. От теории к практике. Москва: СОЛОН-Р, 2002. 448 с.
 - в) ресурсы сети Интернет:
 - http://parallel.ru/
 - http://www.netlib.org/blas/
 - https://software.intel.com/en-us/intel-mkl
- Массовый открытый онлайн-курс «Введение в параллельное про-граммирование с использованием OpenMP и MPI» https://www.coursera.org/learn/parallelnoye-programmirovaniye
 - http://top500.org
 - http://top50.supercomputers.ru
- Электронный образовательный ресурс(ЭОР) «Математическое моде-лирование на графах , ч.1 и ч.2.»:
 - http://math.tsu.ru/sites/default/files/mmf2/e-resources/graf_g1.pdf
 - http://math.tsu.ru/sites/default/files/mmf2/e-resources/graf2_g1.pdf

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - putty (дистрибутив putty) https://www.putty.org/
 - winscp (дистрибутив winscp) https://winscp.net/eng/download.php
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ
 http://vital.lib.tsu.ru/vital/access/manager/Index

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Доступ на вычислительный кластер ТГУ Cyberia.

15. Информация о разработчиках

Данилкин Евгений Александрович, кандидат физико-математических наук, кафедры вычислительной математики и компьютерного моделирования ММФ ТГУ, доцент.