Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

Рабочая программа дисциплины

Устойчивость деформируемых систем

по направлению подготовки

15.04.03 Прикладная механика

Направленность (профиль) подготовки: Компьютерный инжиниринг конструкций, биомеханических систем и материалов

> Форма обучения Очная

Квалификация **Магистр**

> Год приема 2023

Код дисциплины в учебном плане: Б1.В.ДВ.01.01.01

СОГЛАСОВАНО:

Руководитель ОПОП

В.А. Скрипняк

Председатель УМК

В.А. Скрипняк

Томск - 2023

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-10 Способен разрабатывать физико-механические, математические и компьютерные модели при решении научно-технических задач в области прикладной механики;.

ПК-1 Способен критически анализировать современные проблемы прикладной механики с учетом потребностей промышленности, современных достижений науки и мировых тенденций развития техники и технологий, ставить задачи и разрабатывать программу исследования, выбирать адекватные способы И методы решения прикладных теоретических, экспериментальных анализировать, задач, интерпретировать, представлять и применять полученные результаты.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 10.1 Знать современные физико-механические, математические и компьютерные модели при решении актуальных научно-технических задач в области прикладной механики

ИОПК 10.2 Уметь разрабатывать физико-механические, математические и компьютерные модели при решении научно-технических задач в области прикладной механики

ИОПК 10.3 Владеть методикой разработки физико-механических, математических и компьютерных моделей при решении научно-технических задач в области прикладной механики

ИПК 1.1 Знать перспективные направления и последние достижения современной науки и техники в области производства объемных материалов, соединений, композитов на их основе и изделий из них

ИПК 1.2 Знать современные проблемы прикладной механики, методы планирования научно-исследовательской работы, способы решения научных задач механики, обработки и анализа полученных данных, представления результатов

ИПК 1.3 Уметь осуществлять сбор, анализ и систематизацию информации по проблеме исследования с учетом потребностей промышленности, современных достижений науки и мировых тенденций развития техники и технологий

ИПК 1.4 Уметь ставить задачи и разрабатывать программу исследования, выбирать адекватные способы и методы решения теоретических, прикладных и экспериментальных задач

ИПК 1.5 Уметь

анализировать, интерпретировать, оценивать, представлять результаты собственных исследований в профессиональном сообществе и защищать результаты выполненного исследования с обоснованными выводами и рекомендациями

2. Задачи освоения дисциплины

- Освоить методику определения устойчивости конструкций.
- Научиться применять понятийный аппарат теории устойчивости деформируемых конструкций при решении практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль №1 «Вычислительная механика и компьютерный инжиниринг».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 16 ч.
- -лабораторные: 22 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

- Тема 1. Понятие устойчивости, Точки бифуркации, предельные точки
- Тема 2. Исследование устойчивости деформируемых систем с начальными несовершенствами
- Тема 3. Устойчивость упругих стержней под действием сжимающей консервативной нагрузки
- Тема 4. Влияние граничных условий на устойчивость деформируемых систем.
- Тема 5. Устойчивость трехопорного стержня (индивидуальное задание)
- Тема 6. Устойчивость стержня под действием следящей нагрузки.
- Тема 7. Устойчивость стержня на упругом основании. Задачи термоустойчивости.
- Тема 8. Устойчивость за пределами упругости
- Тема 9. Устойчивость при комбинированном нагружении
- Тема 10. Устойчивость пластин и оболочек
- Тема 11. Устойчивость при нагрузках, величины которых зависят от перемещений

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой в первом семестре проводится в письменной форме по билетам. Билет содержит теоретический вопрос для установления овладением ИОПК – 10.1, ИПК – 1.1, ИПК – 1.2 и две задачи для установлении ИОПК – 10.2, ИОПК – 10.3, ИПК – 1.3, ИПК – 1.4, ИПК – 1.5. Продолжительность зачета 1,5 часа.

Примерный перечень теоретических вопросов:

- 1. Определение устойчивости движения по Ляпунову. Первый и второй методы Ляпунова.
- 2. Определение устойчивости по Пуассону и Лагранжу.
- 3. Первый метод Ляпунова, уравнения в вариациях.
- 4. Теорема Лагранжа-Дирихле и её применение к исследованию устойчивости положений равновесия консервативных механических систем.

- 5. Статическая бифуркация положений равновесия (бифуркация Эйлера). Условие трансверсальности. Закритическое поведение.
- 6. Динамическая бифуркация (бифуркация Пуанкаре Андронова Хопфа). Закритическое поведение. Примеры. Условие трансверсальности.
- 7. Неустойчивость стойки под действием следящей силы. (Задача Циглера). Парадокс Циглера.
- 8. Типы динамических систем. Уравнения движения в возмущениях.
- 9. Критерий Рауса Гурвица и его применение.
- 10. Примеры динамических систем, теряющих устойчивость положений равновесия через динамическую бифуркацию.
- 11. Примеры динамических систем, теряющих устойчивость положений равновесия через статическую бифуркацию.

Примеры задач:

Задача 1.

Дано: Геометрические параметры и упругие характеристики материала стержней.

Определить: Общую и местную устойчивость стержней.

Задача 2.

Дано: Геометрические параметры и упругие характеристики материала пластины.

Определить: Устойчивость прямоугольной пластины при сжатии.

Залача 3.

Дано: Геометрические параметры и упругие характеристики материала пластины.

Определить: Устойчивость прямоугольной пластины при сдвиге.

Задача 4.

Дано: Геометрические параметры и упругие характеристики материала цилиндрической оболочки.

Определить: Устойчивость цилиндрической оболочки при сжатии.

Задача 5.

Дано: Геометрические параметры и упругие характеристики материала цилиндрической оболочки.

Определить: Устойчивость цилиндрической оболочки при кручении.

Задача 6.

Дано: Геометрические параметры и упругие характеристики материала цилиндрической оболочки.

Определить: Устойчивость цилиндрической оболочки при внешнем давлении.

Задача 7.

Дано: Геометрические параметры и упругие характеристики материала цилиндрической оболочки.

Определить: Устойчивость цилиндрической оболочки при совместном действии осевой сжимающей силы и внутреннего давления.

Задача 8.

Дано: Геометрические параметры и упругие характеристики материала сферической оболочки.

Определить: Устойчивость сферической оболочки при внешнем давлении.

Результаты зачета с оценкой определяются оценками «отлично», «хорошо»,

«удовлетворительно», «неудовлетворительно».

петворительно», «неудовлетворительно».	
Оценка	Уровень владения темой
неудовлетворительно	о грубые ошибки в знании основных положений
	и понятий в области устойчивости деформируемых
	систем, направленности профессионального
	образования (прикладная механика);
	о отсутствие знаний основных положений
	устойчивости деформируемых систем, умения
	оперировать ими;
	о недостаточное владение научным стилем речи;
	о не умение защитить ответы на основные
	вопросы.
удовлетворительно	о удовлетворительные знания основных понятий
	в области устойчивости деформируемых систем,
	умение оперировать ими, умение оперировать ими,
	неточности знаний;
	о удовлетворительная степень полноты и
	точности рассмотрения основных вопросов
	устойчивости деформируемых систем, раскрытия
	темы;
	о посредственные ответы на вопросы.
хорошо	о хорошие знания основных положений в
	области устойчивости деформируемых систем,
	умение оперировать ими, демонстрируются
	единичные неточности;
	о достаточная степень полноты и точности
	рассмотрения основных вопросов, раскрытия темы,
	демонстрируются единичные неточности;
	о единичные (негрубые) стилистические и
	речевые погрешности;
	о умение защитить ответы на основные
	вопросы;
	о хорошее владение научным стилем речи
отлично	о глубокие знания основных понятий в области
	устойчивости деформируемых систем, умение
	оперировать ими;
	о высокую степень полноты и точности
	рассмотрения основных вопросов, раскрытия темы;
	о отличное умение представить основные
	вопросы в научном контексте;
	о отличное владение научным стилем речи

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в электронном университете «Moodle» $\frac{\text{http://moodle.tsu.ru/course/view.php?id=22425}}{\text{.}}$
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине;
 - в) Методические указания по проведению лабораторных работ;

г) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Вольмир, А. С. Устойчивость деформируемых систем в 2 ч. Часть 1 : учебное пособие для вузов / А. С. Вольмир. 3-е изд., стер. Москва : Издательство Юрайт, 2021. 526 с. (Высшее образование). ISBN 978-5-534-06864-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/473152 (дата обращения: 24.03.2022
- Вольмир, А. С. Устойчивость деформируемых систем в 2 ч. Часть 2 : учебное пособие для вузов / А. С. Вольмир. 3-е изд., стер. Москва : Издательство Юрайт, 2020. 480 с. (Высшее образование). ISBN 978-5-534-06867-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/454397 (дата обращения: 24.03.2022).
- б) дополнительная литература:
- Себешев В.Г. Расчет стержневых систем на устойчивость методом перемещений: Учеб. пособие / В.Г. Себешев; Новосиб. гос. архитектур.-строит. ун-т. (Сибстрин). Новосибирск: НГАСУ (Сибстрин), 2004. 84 с.

– ...

- в) ресурсы сети Интернет:
- открытые онлайн-курсы
- EqWorld: мир математических уравнений [Электронный ресурс] / под ред. А. Д. Полянина. Электрон. дан. [Б. м.], 2004-2016. URL: http://eqworld.ipmnet.ru/ru/library.htm
- Библиотека научной литературы LIB.org.by [Электронный ресурс] : книги, журналы, статьи / Белорусская научная библиотека. Электрон. дан. [Б. м., б. г.]. URL: http://lib.org.by/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook):
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных (при наличии):
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатория оборудованная техническими средствами и имеющими выход в интернет.

15. Информация о разработчиках

Масловский Владислав Иванович, кандидат физико-математических наук, доцент, кафедра механики деформируемого твердого тела, доцент