Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Факультет инновационных технологий

УТВЕРЖДАЮ:

Декан

С. В. Шидловский

« 29 »

08

2022 г.

Рабочая программа дисциплины

Навигационные системы

по направлению подготовки

09.04.02 Информационные системы и технологии

Направленность (профиль) подготовки:

Компьютерная инженерия: искусственный интеллект и робототехника

Форма обучения

Очная

Квалификация

Магистр

Год приема

2022

Код дисциплины в учебном плане: Б1.В.ДВ.01.01.02

СОГЛАСОВАНО:

Руководитель ОПОП

С.В. Шидловский

Председатель УМК

О.В. Вусович

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен разрабатывать оригинальные алгоритмы и программные средства, в том числе с использованием современных интеллектуальных технологий, для решения профессиональных задач;.
- ПК-2 Способен разрабатывать аппаратно-программные комплексы на основе технологий искусственного интеллекта для управления подвижными объектами, автономными системами, технологическими линиями и процессами.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.1 Владеет методами алгоритмизации и программирования
- ИОПК 2.2 Знает современные подходы, методы и технологии в области интеллектуального анализа данных;
- ИОПК 2.3 Использует методы современных интеллектуальных технологий для решения профессиональных задач;
- ИПК 2.1 Способен применять методы машинного обучения для решения задач профессиональной деятельности;
- ИПК 2.2 Способен разрабатывать техническое решение концепции алгоритма работы систем автоматизации и управления (или ее элементов).

2. Задачи освоения дисциплины

- Освоить технологии автономной навигации;
- Научиться применять понятийный аппарат построения навигационных систем для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль «Модуль на русском языке».

4. Семестр освоения и форма промежуточной аттестации по дисциплине

Третий семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Распределенные информационные вычислительные системы, Моделирование систем, Теория систем управления, Искусственный интеллект и машинное обучение, Системы технического зрения.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

- лекции: 6 ч.

- лабораторные: 20 ч

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение в навигационные системы.

Основные навигационные математические методы. Системы координат. Преобразования систем координат. Геометрия Земли. Типы координат в геоцентрической системе. Гравитация.

ROS: локальная система координат.

Тема 2. Глобальные навигационные спутниковые системы.

GPS. ГЛОНАСС. COMPASS. Снижение точности.

Преобразование Кватернионов в углы Эйлера.

Тема 3. Визуальная навигация.

Визуальная одометрия. Наблюдение движения (2D, 3D). Решатель PNP.

Автономная навигация мобильного робота.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, выполнения тестов, выполнения лабораторных работ и письменных отчетов по их итогам, и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Итоговая оценка по дисциплине определяется по формуле:

 $O_{\text{итоговая}} = 0.5 * O_{\text{накопленная}} + 0.5 * O_{\text{итогового контроля,}}$

где $O_{\text{накопленная}}$ — средняя арифметическая оценка, состоящая из оценок, накопленных за прохождение текущего контроля и выполнение самостоятельной работы;

 $O_{\text{итогового контроля}}$ — оценка итогового контроля. Проставляется за прохождение контрольного испытания (сдача зачета с оценкой) в форме устного опроса.

Оценка ставится по пятибалльной шкале. Округление оценки производится в пользу студента.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=00000
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Вострокнутов, А. Л. Основы топографии : учебник для вузов / А. Л. Вострокнутов, В. Н. Супрун, Г. В. Шевченко Москва : Издательство Юрайт, 2022. 196 с. URL: https://urait.ru/bcode/492059
- Климов, Д. М. Инерциальная навигация на море: учебное пособие для вузов / Д. М. Климов, А. Ю. Ишлинский Москва: Издательство Юрайт, 2022. 156 с.— URL: https://urait.ru/bcode/494030

- б) дополнительная литература:
- Куприянов А.О. Глобальные навигационные спутниковые системы: Учебное пособие. М.: МИИГАиК, 2017. -76с. . . .
- Якушенков А.А. Основы инерциальной навигации. -М.: Морской транспорт, 1963. 149 с.
- в) основная и дополнительная литература для дисциплины «Embedded systems» модуля по выбору №2 на английском языке

Основная литература:

- Mario Ignagni. Strapdown Navigation Systems: Theory and Application. Champlain Press, 2019. - 550p.
- Yueming Zhao. GPS/IMU Integrated System for Land Vehicle Navigation based on MEMS. - Royal Institute of Technology, 2011. - 85p.

Дополнительная литература:

Kiran Palla. Autonomous Navigation of ROS Robot : Differential Drive Robot
Simulation.
https://kiranpalla.com/autonomous-navigation-ros-differential-drive-robot-simulation/

13. Перечень информационных технологий

а) лицензионное и свободно распространяемое программное обеспечение:

Для проведения лекционных занятий необходимо лицензионное и свободно распространяемое программное обеспечение: ОС Windows 10 Pro, Microsoft Office стандартный 2010, Dr. Web Desktop Security Suite, Adobe Connect, браузер последней версии.

Для проведения лабораторных занятий необходимо лицензионное и свободно распространяемое программное обеспечение: ОС Linux, пакет программ LibreOffice, Adobe Connect, браузер последней версии, а также фреймворк ROS - Robot Operating, дистрибутив языка программирования Python 3.x, библиотеки OpenCV.

- б) информационные справочные системы:
- Исходные коды к главам книги «Цифровой синтез. Практический курс / Под общ. ред. Романова А. Ю., Панчула Ю. В., 2020. https://github.com/RomeoMe5/DDLM
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа, индивидуальных и групповых консультаций, текущего контроля.

Учебная аудитория для проведения лабораторных работ, промежуточной аттестации должна быть оснащена оборудованием и техническими средствами обучения: компьютер преподавателя (ноутбук), персональные студенческие компьютеры с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду НИ ТГУ. Для отображения презентаций используется мультимедиа-проектор, широкоформатный экран, акустическая система.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Мобильный колесный робот TurtleBro.

15. Информация о разработчиках

Шидловский Станислав Викторович, д-р техн. наук, декан Факультета инновационных технологий ТГУ.