Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан С.Н. Филимонов

Рабочая программа дисциплины

Статистическая физика

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: **Фундаментальная и прикладная физика**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости

ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать

2. Задачи освоения дисциплины

- Освоить аппарат термодинамики и статистической физики.
- Научиться применять понятийный аппарат термодинамики и статистической физики для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, зачет

Второй семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: математический анализ, линейная алгебра и аналитическая геометрия, дифференциальные уравнения, математическая физика, классическая электродинамика.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- -лекции: 64 ч.
- -практические занятия: 48 ч.
 - в том числе практическая подготовка: 48 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основы термодинамики

Термодинамика и статистическая физика как физические теории тепловой формы движения материи. Краткие исторические сведения об основных этапах развития термодинамики и молекулярно-кинетической теории. Процесс релаксации. Состояние

термодинамического равновесия. Термодинамические параметры. Квазистатические процессы. Принцип энергии. Второе и третье начала термодинамики. Обратимые и необратимые процессы. Метод термодинамических функций. Термодинамические коэффициенты.

Тема 2. Методы термодинамики и их применение

Идеальный газ и газ Ван-дер-Ваальса. Процессы Гей-Люссака и Джоуля-Томсона. Принципиальная схема действия тепловой машины. Коэффициент полезного действия тепловой машины. Теорема и максимальной работе. Теорема Карно. Тепловая машина, работающая с наибольшей мощностью. Равновесие и устойчивость открытых термодинамических систем. Физические последствия условий устойчивости. Составные термодинамические системы. Равновесное состояние составной системы. Принцип максимума энтропии. Равновесное тепловое излучение.

Тема 3. Системы с переменным количеством вещества

Общие сведения о многокомпонентных системах. Фазы и компоненты. Условия равновесия фаз и направления фазовых переходов в многофазных и многокомпонентных системах. Правило фаз Гиббса. Равновесие двух фаз в однокомпонентной системе. Фазовые переходы 1 и 2 рода. Уравнения Клайпейрона-Клаузиуса и Эренфеста. Термодинамика парамагнетиков и ферромагнетиков. Точка Кюри. Задача о химическом равновесии в газовой фазе. Закон действующих масс и правило вант-Гоффа. Термодинамика слабых растворов. Закон Рауля. Термоэлектрические явления.

Тема 4. Основы статистической механики

Микроскопическое и макроскопическое состояние. Описание микроскопическое состояния в классической и квантовой механике. Функция распределения и статистический оператор. Постулат о наблюдаемых значениях физических величин. Временная эволюция смешанного состояния. Уравнение Лиувилля и уравнение фон Неймана. Эргодическая гипотеза. Микроканоническое распределение для замкнутой системы (классический и квантовый случай). Каноническое распределение. Большое каноническое распределение.

Тема 5. Статистические распределения идеальных газов

Классический идеальный газ. Распределения Максвелла и Максвелла-Больцмана. Столкновения молекул. Закон равного распределения. Квантование поступательного движения. Идеальные одноатомные квантовые газы. Представление чисел заполнения и расчет статистических сумм. Статистики Бозе-Эйнштейна и Ферми-Дирака. Переход к классической статистике Больцмана. Разреженный квантовый идеальный газ. Равновесное тепловое излучение. Фотонный газ. Энтропийная константа газов. Ионизация газов. Формула Саха.

Тема 6. Идеальные газы при низких температурах и неидеальные системы

Тепловое движение атомов в кристалле. Фононный газ. Квантовая теория теплоемкости двухатомного идеального газа с учетом внутренних молекулярных (колебательное и вращательное) движений. Теплоёмкость водорода при низкой температуре. Ортоводород и пароводород. Бозе-газ при низких температурах. Бозе-Эйнштейновская конденсация. Ферми-газ при низких температурах. Электронный газ в металлах. Теплоемкость вырожденного электронного газа. Газ с короткодействующими силами взаимодействия между частицами. Разложение по степеням плотности. Полностью ионизированный газ.

Тема 7. Элементы теории флуктуаций и физической кинетики

Флуктуации объема, энергии, числа частиц. Корреляция флуктуаций во времени. Флуктуационный предел чувствительности измерительных приборов. Уравнение кинетического баланса. Уравнение Больцмана.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ и тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в первом семестре проводится в письменной форме по билетам. Билет состоит из трех частей. Продолжительность зачета 1 час.

Зачет с оценкой во втором семестре проводится в письменной форме по билетам. Билет состоит из трех частей. Продолжительность зачета с оценкой 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=2021 (первый семестр), https://moodle.tsu.ru/course/view.php?id=30732 (второй семестр).
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских / практических занятий по дисциплине.
 - Тема 1. Некоторые соотношения между термодинамическими коэффициентами.
 - Тема 2. Первое начало термодинамики. Коэффициент Грюнайзена
- Тема 3. Второе начало термодинамики. Принципы Клаузиуса, Томсона (Кельвина), Каратеодори и принцип невозможности создания вечного двигателя второго рода.
- Тема 4. Работа тепловой машины по квазистатическому циклу. Коэффициент полезного действия.
 - Тема 5. Энтропия системы.
- Тема 6. Термодинамический потенциал Гиббса системы. Уравнение Гиббса-Дюгема.
 - Тема 7. Система во внешнем поле. Задача на безусловный экстремум
 - Тема 8. Давление насыщенного пара
- Тема 9. Каноническое и большое каноническое распределения Гиббса.
- Статистическая сумма, средняя энергия частиц, средняя плотность частиц.
 - Тема 10. Термодинамические потенциалы идеального классического газа.
 - Тема 11. Распределение Максвелла для идеального газа свободных частиц.
 - Тема 12. Распределение Больцмана. Газ во вращающемся сосуде.
- Тема 13. Идеальный газ частиц с двумя уровнями энергии. Энергия и теплоёмкость. Ширина максимума теплоёмкости
 - Тема 14. Парамагнитный газ в магнитном поле. Классический случай.
 - Тема 15. Парамагнитный газ в магнитном поле. Квантовый случай.

- Тема 16. Полный магнитный момент системы свободных электронов при абсолютном нуле температуры (полное вырождение)
- Тема 17. Система твёрдое тело газ в состоянии равновесия. Давление газа как функция температуры.
 - Тема 18 Энергия и теплоёмкость двумерного газа фононов в приближении Дебая
- Тема 19. Среднее значение величины $ri(\partial E/\partial ri)$ в случае канонического распределения
 - Тема 20. Теорема о вириале
 - Тема 21. Вириальное разложение. Второй вириальный коэффициент
- Тема 22. Второй вириальный коэффициент в модели прямоугольной потенциальной ямы. Газ Ван-дер-Ваальса
 - Тема 23. Вириальные коэффициенты в модели решёточного газа
- Тема 24. Экстремум второго вириального коэффициента. Потенциал Леннарда-Джонса
 - г) Материалы для самостоятельной работы студентов.

Вопросы, выносимые на самостоятельное изучение:

- 1. Различные формулировки второго начала термодинамики.
- 2. Фундаментальное уравнение состояния термодинамической системы.
- 3. Термодинамика негазовых систем (парамагнетики, диэлектрики, стержни).
- 4. Процессы Гей-Люссака и Джоуля-Томсона.
- 5. Тепловая машина, работающая с наибольшей мощностью.
- 6. Принцип максимума энтропии
- 7. Квантовомеханический вывод большого канонического распределения.
- 8. Квантование поступательного движения.
- 9. Электронный газ в полупроводниках.
- 10. Магнитные свойства идеальных систем.
- 11. Флуктуации энергии, давления и числа частиц.
- 12. Ионизация газов. Формула Саха.

Темы для рефератов и учебно-методическая литература для самостоятельной работы:

Тема 1. Формулировки второго начала термодинамики Литература:

- 1) Capek V. Challengies to the Second Law of Thermodynamics: Theory and experiment / V. Capek and D.P. Sheehan. Springer:Berlin, 2005.
 - 2) Белоконь Н.И. Основные принципы термодинамики. М.: Недра, 1968. 110 с.

Тема 2. Неидеальный газ классических частиц Литература:

- 1) Аминов Л.К. Термодинамика и статистическая физика. Конспекты лекций и задачи / Л.К. Аминов. Казань: Казан. ун-т, 2015. 180 с.
- 2) Сон Э.Е. Лекции по физической механике / Э.Е. Сон. М.: Физматлит., 2015. 244 с.
 - 3) Задачи по термодинамике и статистической физике. под. ред. П.Ландсберга. М.: Мир. 1974. 684 с.
 - Тема 3. Флуктуации числа частиц в идеальном газе Литература:

- 1) Казанский В.Б. Статистическая физика и термодинамика. Задачи, основные понятия и положения: Методическое пособие. Харьков: ХНУ, 2004. 112 с.
- 2) Ландау Л.Д. Теоретическая физика. Т.5. Статистическая физика. Часть 1. Издание 5-е. / Л.Д. Ландау, Е.М. Лифшиц. М.: Физматлит, 2001. 616 с.
- 3) Herbert B. Callen and Theodore A. Welton. Irreversibility and Generalized Noise // Phys. Rev. 1951. Vol. 83. P. 34-40.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Ландау Л.Д. Теоретическая физика. Т.5. Статистическая физика. Часть 1. М.: Физматлит, 2001.-616 с.
- Румер Ю.Б. Термодинамика, статистическая физика и физическая кинетика. М.: Наука, 1977. 551 с.
- Куни Ф.М. Статистическая физика и термодинамика. М.: Наука, 1981. 351 с.
- Терлецкий Я.П. Статистическая физика. М.: Высшая школа, 1973. 277 с.
- Ансельм А.И. Основы статистической физики и термодинамики. М.: Физматлит, 1973. – 423 с.
- Кубо Р. Термодинамика. − М.: Мир, 1970. − 304 с.
- Кубо Р. Статистическая физика. − М.: Мир, 1967. − 452 с.
- Киттель Ч. Статистическая термодинамика. М.: Hayka, 1977. 336 с.
- Власов А.А. Статистические функции распределения. М.: Ленард, 2014. 355 с.
- Квасников И.А. Термодинамика и статистическая физика. Т.4. М.: КомКнига, 2014. 349 с.
- Квасников И.А. Квантовая статистика. М.: Красанд, 2014. 569 с.
 - б) дополнительная литература:
- Абрагам А. Ядерный магнетизм. M.: ИЛ, 1963. 552 c.
- Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. Т. 1. М.: Мир, 1972.— 652 с.
- Арнольд В.И. Математические методы классической механики. М.: Наука, 1974.
 432 с.
- Ахиезер А.И., Пелетминский С.В. Методы статистической физики. М.: Наука, 1977. 368 с.
- Базаров И.П. Термодинамика. М.: Высшая школа, 1983. 446 с.
- Балеску Р. Равновесная и неравновесная статистическая механика. М.: Мир. Т.1, 1978. 406 с.
- Балеску Р. Равновесная и неравновесная статистическая механика. М.: Мир. Т.2, 1978. 400 с.
- Блум К. Теория матрицы плотности и ее приложения. М.: Мир, 1983. 248 с.
- Боголюбов Н.Н. Проблемы динамической теории в статистической физике. М-Л.:
 Гостехиздат, 1946.
- Бонч-Бруевич В.Л., Тябликов С.В. Метод функций Грина в статистической механике. М.: Физматгиз, 1961. 312 с.
- Волькенштейн М.В. Энтропия и информация. М.: Hayka, 1986. 192 c.
- Гиббс Дж.В. Термодинамика. Статистическая механика. М.: Наука, 1982. 584 с.
- Гречко Л.Г. и др. Сборник задач по теоретической физике. М.: Высшая школа, 1984.-320 с.
- Грот С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
- Давыдов А.С. Теория твердого тела. М.: Наука, 1976. 640 с.
- Заславский Г.М. Стохастичность динамических систем. − М.: Наука, 1984. − 272 с.

- Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику. М.: Наука, 1988. 368 с.
- Изюмов Ю.А., Сыромятников В.Н. Фазовые переходы и симметрия кристаллов. М.: Наука, 1984. 248 с.
- Кадомцев Б.Б. Динамика и информация. М.: Ред. УФН, 1997. 400 с.
- Кайзер Дж. Статистическая термодинамика неравновесных процессов. М.: Мир, 1990. 608 с.
- Киттель Ч. Элементарная статистическая физика. М.: ИЛ, 1960. 278 с.
- Киттель Ч. Введение в физику твердого тела. М.: Физматгиз, 1963. 696 с.
- Киттель Ч. Квантовая теория твердых тел. М.: Наука, 1967. 492 с.
- Климонтович Ю.Л. Статистическая физика. М.: Наука, 1982. 608 с.
- Кондратьев А.С., Романов В.П. Задачи по статистической физике. М.: Наука, 1992.-152 с.
- Задачи по термодинамике и статистической физике / Под ред. П. Ландсберга М.: Мир, 1974.-640 с.
- Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980. 544 с.
- Мартин Н., Ингленд Д. Математическая теория энтропии. М.: Мир, 1988. 350 с.
- Паташинский А.З., Покровский В.Л. Флуктуационная теория фазовых переходов. М.: Наука, 1982. 382 с.
- Пригожин И. От существующего к возникающему. M.: Hayka, 1985. 328 с.
- Сивухин Д.В. Общий курс физики. Т.2. Термодинамика и молекулярная физика. М.: Наука, Физматлит, 1990. 592 с.
- Фейнман Р. Статистическая механика. М.: Мир, 1978. 408 с.
- Феллер В. Введение в теорию вероятностей и ее приложения. Т.1. М.: Мир, 1984.
 528 с.
- Хилл Т. Статистическая механика. М.: ИЛ, 1960. 486 с.
- Хуанг Керзон. Статистическая механика. М.: Мир, 1966. 520 c.
- − Эткинс П. Физическая химия. Т. 1. М.: Мир, 1980. 580 с.
- − Эткинс П. Физическая химия. Т. 2. М.: Мир, 1980. 584 с.
 - в) ресурсы сети Интернет:
- Термодинамика и статистическая физика https://kpfu.ru/portal/docs/F2096324044/Thermodynamics_and_statistical_physics.pdf
- Элементы статистической механики, термодинамики и кинетики http://www.vixri.ru/d3/Shegolev%20I.F.%20%20_Elementy%20statist.%20mexaniki.%2 0Termodinamiki%20i%20kinetiki.pdf
- Функциональные методы в классической статистической физике www.novsu.ru/file/10567

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook), системы компьютерной верстки Latex;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index

- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- ЭБС ZNANIUM.com https://znanium.com/
- ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Лазаренко Георгий Юрьевич, кандидат физико-математических наук, кафедра квантовой теории поля, доцент