Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Физика

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-4 Способен анализировать физическую сущность явлений и процессов, лежащих в основе функционирования микроэлектронной техники, применять основные физические законы и модели для решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-4.1 Понимает основные физические законы и модели, выявляет естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности

ИОПК-4.2 Применяет соответствующий физико-математический аппарат для формализации, анализа и выработки решения проблем, возникающих в ходе профессиональной деятельности

ИОПК-4.3 Анализирует физическую сущность явлений и процессов, лежащих в основе функционирования микроэлектронной техники

Обучение физике по данному направлению осуществляется в течение трёх семестров: 5-го, 6-го и 7-го.

5-ый семестр

2.5 Оценочные материалы текущего контроля и критерии оценивания (5-ый семестр)

Элементы текущего контроля:

- контрольные вопросы;
- контрольная работа.

Примеры

Контрольные вопросы (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Что такое «Кинематические уравнения движения точки»?
- 2. Что такое «Контактные силы»?
- 3. Чем потенциальная энергия механической системы отличается от кинетической энергии?
- 4. Какие законы сохранения рассматривают в механике?
- 5. В чём заключается «Метод векторных диаграмм»?
- 6. Какие колебания называются когерентными?
- 7. В чём заключается явление резонанса?
- 8. В чём заключается явление интерференции волн.
- 9. Что такое «Стоячие волны»?
- 10. В чём заключается эффект Доплера в акустике?

Ответы:

- 1. Кинематические уравнения движения это зависимость координат точки от времени.
- 2. Контактные силы это силы реакции и силы трения.
- 3. Кинетическая энергия это энергия механического движения механической системы, а потенциальная энергия это энергия взаимодействия тел системы или частей одного и того же тела.

- 4. В механике рассматриваются законы сохранения энергии, импульса и момента импульса.
- 5. Метод векторных диаграмм это представление гармонического колебания на плоскости в виде вращающегося вектора амплитуды.
- 6. Колебания называются когерентными, если разность их фаз не меняется с течением времени.
- 7. Явление резонанса это резкое возрастание амплитуды колебаний, когда частота вынужденных колебаний приближается к собственной частоте колебаний системы.
- 8. Явление интерференции это явление наложения когерентных волн, при котором в одних областях пространства наблюдается устойчивое во времени их взаимное усиление, а в других областях пространства их взаимное ослабление.
- 9. Стоячие волны это результат наложения бегущих навстречу друг другу плоских волн, имеющих одинаковые частоты и амплитуды.
- 10. Эффект Доплера это изменение частоты волны, регистрируемое приёмником, обусловленное движением источника, приёмника или того и другого одновременно.

Критерии оценивания: тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Контрольная работа (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3) Контрольная работа состоит из 5 задач.

Примеры задач:

Задача 1.

Ракета взлетает с поверхности Земли под углом $\theta = 30^{0}$ к горизонту со скоростью v = 200м/с. Какова дальность полета ракеты? Сопротивлением воздуха пренебречь.

Задача 2.

Санки спускаются с горы высотой h=20м, имеющей уклон $\theta=45^{0}$, и проходят по горизонтальной поверхности путь S, равный 60м. Каков динамический коэффициент трения?

Задача 3.

Свободно падающий с некоторой высоты копер весом P = 5000H забивает сваю. Скорость копра перед ударом v = 12 м/c. Сила сопротивления грунта F постоянна и равна $2.0 \bullet 10^6 \text{H}$. Сколько ударов должен совершить копер, чтобы высота выступающей над поверхностью земли сваи уменьшилась на 50 cm?

Задача 4.

Тема «Законы сохранения в механике».

Типовая задача. Человек стоит на неподвижной скамье Жуковского и держит в руках ось диска, масса которого m=2кг и радиус R=1м. Вначале колесо не вращается, а затем человек раскручивает его до угловой скорости $\omega_1=6$ об/с. При этом он сам вместе со скамьей приходит во вращение в обратном направлении с угловой скоростью $\omega_2=1$ об/с. Найти момент инерции скамьи с человеком.

Задача 5.

Написать уравнение гармонического колебательного движения, если максимальное ускорение точки $a_{max}=49.3\,$ см/с 2 , период колебаний T=2c и смещение точки от положения равновесия в начальный момент времени $x_0=25\,$ мм.

Задача 6.

Написать уравнение движения, получающегося в результате сложения двух одинаково направленных гармонических колебательных движений с одинаковым периодом T=8c и одинаковой амплитудой A=0.02м. Разность фаз между этими колебаниями $\phi_2-\phi_1=\pi/4$.

Задача 7.

Поезд удаляется от неподвижного наблюдателя под углом $\theta_1=45^0$ к линии, соединяющей точку нахождения поезда и точку расположения наблюдателя. Скорость поезда равна $V_1=54$ км/ч. Поезд дает свисток с частотой v=550 Гц. Найти частоту v^1 колебаний звука, который слышит наблюдатель. Скорость распространения звука в воздухе V=330 м/с.

Ответы:

Задача 1. 3534,7 м

Задача 2. 0.25

Задача 3. 28 ударов

Задача 4. 6 кг \times м 2

Задача 5. $x = 0.05\sin(\pi t + \frac{\pi}{6})$

Задача 6. $S = 0.037 \sin(\frac{\pi}{4}t + \frac{\pi}{8})$

Задача 7. у = 532.94 Гп

Критерии оценивания:

Результаты контрольной работы определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если все 5 задач, входящие в контрольную работу, решены правильно. Оценка «хорошо» выставляется, если правильно решены 4 задачи, оценка «удовлетворительно» - если правильно решены 3 задачи. В остальных случаях выставляется оценка «неудовлетворительно».

3.5 Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания (5-ый семестр)

В 5-ом семестре предусмотрена промежуточная аттестации в форме зачёта. Зачёт проводится в форме собеседования. Перечень вопросов, предлагаемых обучающемуся в процессе собеседования, следующий.

Раздел «МЕХАНИКА» (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Модели описания реальных тел в механике.
- 2. Кинематические уравнения движения точки. Траектория. Длина пути. Скорость. Ускорение.

- 3. Первый закон Ньютона. Свойство инерции тел. Инерциальные системы отсчета.
- 4. Сила. Масса. Импульс.
- 5. Второй закон Ньютона.
- 6. Третий закон Ньютона.
- 7. Закон изменения импульса механической системы.
- 8. Центр масс механической системы и закон его движения.
- 9. Контактные силы (силы реакции и трения).
- 10. Тяготение. Закон всемирного тяготения.
- 11. Работа силы. Потенциальная сила.
- 12. Потенциальная энергия механической системы.
- 13. Кинетическая энергия материальной точки и механической системы.
- 14. Вращательное движение твердого тела и его основные характеристики
- 15. Закон изменения момента импульса.
- 16. Основное уравнение вращательного движения твердого тела.
- 18. Закон сохранения импульса.
- 19. Закон сохранения механической энергии.
- 20. Закон сохранения момента импульса.

Раздел «МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ» (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Гармоническое колебательное движение.
 - 2. Дифференциальное уравнение свободных незатухающих колебаний.
 - 3. Метод векторных диаграмм.
 - 4. Сложение гармонических колебаний.
 - 5. Когерентные колебания.
 - 6. Свободные затухающие колебания.
 - 7. Вынужденные колебания. Резонанс.
 - 8. Физический и математический маятники.
 - 9. Механизм возникновения волн в упругих средах.
 - 10. Плоские волны в линейной, однородной и изотропной среде.
 - 11. Энергия волны.
 - 12. Принцип суперпозиции волн.
 - 13. Когерентные волны.
 - 14. Интерференция волн.
 - 15. Стоячие волны.
 - 16. Эффект Доплера в акустике.

Раздел «ТЕРМОДИНАМИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА» (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Статистический и термодинамический методы исследования физических систем.
- 2. Термодинамические системы. Термодинамические параметры и процессы.
- 3. Внутренняя энергия термодинамической системы.
- 4. Работа и теплота. Виды теплообмена.
- 5. Графическое изображение термодинамических процессов.
- 6. Теплоемкость вещества. Удельная и молярная теплоемкости.
- 7. Модель идеального газа. Уравнение Клапейрона-Менделеева.
- 8. Первый закон термодинамики.
- 9. Изохорный процесс идеальных газов.
- 10. Изобарный процесс идеальных газов.

- 11. Изотермический процесс идеальных газов.
- 12. Адиабатный процесс идеальных газов.
- 13. Второй закон термодинамики. Энтропия.

Обучающийся получает оценку «зачтено», если он предварительно выполнил на положительную оценку контрольную работу и правильно ответил на 3 из 5-ти предложенных вопросов.

4.5 Оценочные материалы для проверки остаточных знаний (сформированности компетенций) (5-ый семестр)

Для проверки остаточных знаний используются следующие вопросы (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Траектория. Длина пути. Скорость. Ускорение.
- 2. Три закона Ньютона.
- 3. Контактные силы (силы реакции и трения).
- 4. Тяготение. Закон всемирного тяготения.
- 5. Потенциальная энергия механической системы.
- 6. Кинетическая энергия материальной точки и механической системы.
- 7. Вращательное движение твердого тела и его основные характеристики
- 8. Законы сохранения в механике.
- 9. Гармоническое колебательное движение.
- 10. Сложение гармонических колебаний.
- 11. Когерентные колебания.
- 12. Свободные затухающие колебания.
- 13. Вынужденные колебания. Резонанс.
- 14. Принцип суперпозиции волн.
- 15. Интерференция волн.
- 16. Стоячие волны.
- 17. Эффект Доплера в акустике.
- 18. Внутренняя энергия термодинамической системы.
- 19. Графическое изображение термодинамических процессов.
- 20. Теплоемкость вещества. Удельная и молярная теплоемкости.
- 21. Модель идеального газа. Уравнение Клапейрона-Менделеева.
- 22. Первый закон термодинамики.
- 23. Второй закон термодинамики. Энтропия.

6-ой семестр

2.6 Оценочные материалы текущего контроля и критерии оценивания (6-ой семестр)

Элементы текущего контроля:

- контрольные вопросы;
- контрольная работа.

Примеры

Контрольные вопросы (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Как формулируется закон сохранения электрического заряда?
- 2. Каковы основные характеристики электростатического поля?
- 3. Чем в электрическом смысле проводники отличаются от диэлектриков?

- 4. В чём заключается «поляризация диэлектриков»?
- 5. Что такое «конденсатор»?
- 6. Что такое «электрический ток»?
- 7. Что такое «сила Лоренца»?
- 8. Что определяет закон Био Савара Лапласа?
- 9. Что такое «вихревое электрическое поле»?
- 10. В чём заключается явление взаимной индукции?

Ответы:

- 1. Алгебраическая сумма электрических зарядов тел или частиц не изменяется при любых процессах, происходящих в электрически изолированной системе.
- 2. Основными характеристиками электростатического поля являются напряжённость поля и потенциал.
- 3. Проводники содержат свободные электрические заряды электроны, которые могут свободно перемещаться внутри проводника. В отличие от проводников, электрические заряды в диэлектриках содержатся только в составе их молекул.
- 4. Поляризация диэлектриков это смещение в противоположные стороны под влиянием электрического поля положительных и отрицательных зарядов внутри молекул диэлектрика.
- 5. Конденсатор это устройство, состоящее из двух металлических пластин, разделённых слоем диэлектрика, которое используется для накопления электрического заряда.
- 6. Электрический ток это направленное движение электрических зарядов.
- 7. Сила Лоренца это сила, которая действует на заряд, движущийся в магнитном поле.
- 8. Закон Био Савара Лапласа определяет магнитную индукцию элемента проводника с током.
- 9. Вихревое электрическое поле это электрическое поле, которое возникает при изменении магнитного поля.
- 10. Явление взаимной индукции заключается в наведении эдс индукции во всех электрических цепях, расположенных вблизи цепи переменного тока.

Критерии оценивания: тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Контрольная работа (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3) Контрольная работа состоит из 3 задач.

Примеры задач:

Задача 1.

Заряженный шарик, подвешенный к одноименно заряженной плоскости, отталкивается от нее, при этом нить, на которой он висит, образует с плоскостью угол α . Найти этот угол, если поверхностная плотность заряда плоскости σ =40 мкКл/м², масса шарика m=1 г и его заряд q=1 нКл.

Задача 2.

Используя теорему Остроградского — Гаусса, получить выражение для напряженности электростатического поля заряженной бесконечно длинной нити как функцию расстояния r от нити. Считать заданной линейную плотность заряда на нити τ .

Задача 3.

Электрон движется в плоском горизонтально расположенном конденсаторе параллельно его пластинам со скоростью $V_0 = 3.6 \bullet 10^7$ м/с. Напряженность поля внутри конденсатора $E = 3.7 \bullet 10^3$ В/м. Длина пластин конденсатора I = 20 см. На какое расстояние S_x сместится электрон в вертикальном направлении под действием электрического поля за время его движения в конденсаторе? $m_{\text{эл}} = 9.1 \bullet 10^{-31}$ кг, $q_{\text{эл}} = 1.6 \bullet 10^{-19}$ Кл.

Задача 4.

В цепь, состоящую из источника ЭДС и двух одинаковых параллельно соединенных резисторов R сопротивлением 100 Ом, включают вольтметр, сопротивление которого $R_{\nu}=700\,$ Ом, один раз последовательно, другой раз параллельно. Определить внутреннее сопротивление источника ЭДС, если в обоих случаях показания вольтметра одинаковы.

Залача 5.

Электрон движется в однородном магнитном поле с магнитной индукцией $B = 0.2 \cdot 10^{-3}$ Тл по винтовой линии. Определить скорость V электрона, если радиус винтовой линии R = 3 см, а шаг h = 9см.

Задача 6.

В однородном магнитном поле с индукцией B=0.3 Тл находится прямой проводник длиной I=20 см, по которому течет ток I=10 А. Угол α между направлением тока и вектором магнитной индукции равен 60^{0} . Определить силу F, действующую на проводник.

Задача 7.

Типовая задача. По двум бесконечно длинным прямым параллельным проводам, находящимся на расстоянии R=10 см друг от друга в вакууме, текут токи $I_1=20$ А и $I_2=30$ А одинакового направления. Определить магнитную индукцию В поля, создаваемого токами в точках, лежащих на прямой, ортогональной проводам, если: 1) точка A_1 лежит на расстоянии $r_1=2$ см левее левого провода; 2) точка A_2 лежит на расстоянии $r_2=3$ см правее правого провода; 3) точка A_3 лежит на расстоянии $r_3=4$ см правее левого провода.

Ответы:

Задача 1. α=13°

Задача 2. Е=τ/2πгε

Задача 3. S=1см

Задача 4. r=3,85 Ом

Задача 5. V=1,17· 10^6 м/с

Задача 6. F=0.52 H

Задача 7. B_1 =0.25 мТл, B_2 =0.23 мТл, B_3 =0 Тл,

Критерии оценивания:

Результаты контрольной работы определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если все 3 задачи, входящие в контрольную работу, решены правильно. Оценка «хорошо» выставляется, если решены все 3 задачи, но имеются непринципиальные ошибки, оценка «удовлетворительно» - если правильно решены 2 задачи. В остальных случаях выставляется оценка «неудовлетворительно».

3.6 Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания (6-ой семестр)

В 6-ом семестре предусмотрена промежуточная аттестации в форме зачёта. Зачёт проводится в форме собеседования. Перечень вопросов, предлагаемых обучающемуся в процессе собеседования, следующий.

Раздел «ЭЛЕКТРОСТАТИКА» (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Закон сохранения электрического заряда.
- 2. Взаимодействие зарядов. Закон Кулона
- 3. Принцип суперпозиции и его использование для расчета электростатических полей.
- 4. Напряженность электрического поля.
- 5. Теорема Остроградского Гаусса для поля в вакууме.
- 6. Потенциальная энергия точечного электрического заряда в электростатическом поле. Потенциал электростатического поля.
- 7. Основные свойства проводников в электростатическом поле.
- 8. Диэлектрики в электростатическом поле. Поляризация диэлектриков.
- 9. Энергия электрического поля.
- 10. Плоский конденсатор. Емкость плоского конденсатора.
- 11. Сферический конденсатор. Емкость сферического конденсатора.
- 12. Теорема Остроградского Гаусса для электростатического поля в диэлектрической среде.
- 13. Последовательное и параллельное соединения конденсаторов.

Раздел «ЭЛЕКТРИЧЕСКИЙ ТОК» (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Электродвижущая сила.
- 2. Закон Ома.
- 3. Закон Джоуля Ленца.
- 4. Цепи постоянного тока. Последовательное и параллельное соединения резисторов.
- 5. Правила Кирхгофа.

Раздел «МАГНИТОСТАТИКА» (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Вектор магнитной индукции.
- 2. Закон Ампера. Магнитное взаимодействие между двумя элементами тока.
- 3. Сила Лоренца. Закономерности движения заряженных частиц в магнитном поле.
- 4. Магнитный момент плоского замкнутого контура.
- 5. Закон Био Савара Лапласа.
- 6. Магнитная индукция поля движущегося заряда.
- 7. Закон полного тока для магнитного поля в вакууме.
- 8. Магнитное поле в веществе. Относительная магнитная проницаемость.
- 9. Магнитные свойства веществ. Диамагнетики, парамагнетики и ферромагнетики. Свойства ферромагнетиков.

Раздел «ЭЛЕКТРОДИНАМИКА» (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Основной закон электромагнитной индукции.
- 2. Вихревое электрическое поле.

- 3. Явление самоиндукции. Явление взаимной индукции.
- 4. Энергия магнитного поля контура с током.
- 5. Уравнения Максвелла в интегральной и дифференциальной формах.
- 6. Материальные уравнения.
- 7. Электромагнитные волны как следствие уравнений Максвелла.
- 8. Свойства электромагнитных волн.

Обучающийся получает оценку «зачтено», если он предварительно выполнил на положительную оценку контрольную работу и правильно ответил на 3 из 5-ти предложенных вопросов.

4.6 Оценочные материалы для проверки остаточных знаний (сформированности компетенций) (6-ой семестр)

Для проверки остаточных знаний используются следующие вопросы (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Закон сохранения электрического заряда.
- 2. Взаимодействие зарядов. Закон Кулона
- 3. Напряженность электрического поля.
- 4. Основные свойства проводников в электростатическом поле.
- 5. Диэлектрики в электростатическом поле. Поляризация диэлектриков.
- 6. Плоский конденсатор. Емкость плоского конденсатора. диэлектрической среде.
- 7. Последовательное и параллельное соединения конденсаторов.
- 8. Электродвижущая сила.
- 9. Закон Ома.
- 10. Закон Джоуля Ленца.
- 11. Цепи постоянного тока. Последовательное и параллельное соединения резисторов.
- 12. Вектор магнитной индукции.
- 13. Закон Ампера.
- 14. Сила Лоренца. Закономерности движения заряженных частиц в магнитном поле.
- 15. Магнитное поле в веществе. Относительная магнитная проницаемость.
- 16. Магнитные свойства веществ. Диамагнетики, парамагнетики и ферромагнетики. Свойства ферромагнетиков.
- 17. Основной закон электромагнитной индукции.
- 18. Явление самоиндукции. Явление взаимной индукции.
- 19. Уравнения Максвелла в интегральной и дифференциальной формах.
- 20. Материальные уравнения.
- 21. Свойства электромагнитных волн.

7-ой семестр

2.7 Оценочные материалы текущего контроля и критерии оценивания (7-ой семестр)

Элементы текущего контроля:

- контрольные вопросы;
- контрольная работа.

Примеры

Контрольные вопросы (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Что такое «дифракция света»?
- 2. Что такое «зоны Френеля»?
- 3. Что такое «поглощение света»?
- 4. Что такое «рассеяние света»?
- 5. В чём заключается явление двойного лучепреломления?
- 6. Что такое «абсолютно чёрное тело»?
- 7. В чём заключается явление фотоэффекта?
- 8. По какой формуле определяется энергия фотона?
- 9. О чём говорит принцип Паули?
- 10. Что такое р-п переход?

Ответы:

- 1. Дифракция света это огибание лучами света контура непрозрачных тел и, следовательно, проникновение света в область геометрической тени.
- 2. Зоны Френеля -это кольцевые зоны на поверхности волнового фронта, расстояния от краёв которых до точки наблюдения различаются на $\lambda/2$.
- 3. Поглощение света это ослабление интенсивности световой волны в процессе распространения света в веществе, обусловленное преобразованием электромагнитной энергии волны в другие виды энергии.
- 4. Рассеяние света это преобразование света веществом, сопровождающееся изменением направления распространения света и несобственным свечением вещества.
- 5. Явление двойного лучепреломления заключается в том, что луч света, падающий на поверхность кристалла, раздваивается в нём на два преломлённых луча с взаимно ортогональными плоскостями поляризации.
- 6. «Абсолютно чёрным телом» называется тело, которое полностью поглощает падающее на него электромагнитное излучение, независимо от частоты, поляризации и направления распространения.
- 7. Явление фотоэффекта это явление вырывания электронов из твёрдых и жидких веществ под действием света.
- 8. $\mathcal{E}=h\nu$
- 9. В любом атоме не может быть двух электронов, состояния которых характеризуются одной и той же четвёркой квантовых чисел: главного п, орбитального 1, магнитного m и спинового m_s.
- 10. Это контакт полупроводников п и р типов.

Критерии оценивания: тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Контрольная работа (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3) Контрольная работа состоит из 5 задач.

Примеры задач:

Задача 1.

На горизонтальном дне бассейна глубиной h=1.5 m, лежит плоское зеркало. Луч света входит в воду под углом $\alpha_i=45^{\circ}$. Расстояние S от места входа луча в воду до места выхода его на поверхность воды после отражения от зеркала равно 2.0 m.

Показатель преломления воздуха $n_1 = 1.0$. Определить показатель преломления воды n_2 . Толщиной зеркала пренебречь.

Задача 2.

На экран с круглым отверстием радиусом $r_0=1.5$ мм нормально падает параллельный пучок монохроматического света с длиной волны $\lambda=0.5$ мкм . Точка наблюдения находится на оси отверстия на расстоянии b=1.5м от него. Определить: 1) число i зон Френеля, укладывающихся на отверстии; 2) темное или светлое пятно наблюдается в центре дифракционной картины, если в месте наблюдения помещен экран.

Задача 3.

Показатель преломления некоторого вещества для монохроматического света $\alpha=1.3 \ M^{-1}$. При прохождении в этом веществе пути x_1 интенсивность света уменьшилась в 2 раза по отношению к первоначальной интенсивности I_0 , а при прохождении пути x_2 интенсивность света уменьшилась в 3 раза по отношению к первоначальной интенсивности. Найти разность этих путей (x_2-x_1) .

Задача 4.

Определить, во сколько раз уменьшится интенсивность естественного света, прошедшего через два николя, главные плоскости которых образуют угол $\alpha=60^{\circ}$, если каждый из николей как поглощает, так и отражает 5% падающего на них света.

Задача 5.

В результате нагревания черного тела длина волны, соответствующая максимуму спектральной плотности энергетической светимости, сместилась с $\lambda_{m1}=2.7$ мкм до $\lambda_{m2}=0.9$ мкм. Определить, во сколько раз увеличилась: 1) энергетическая светимость тела); 2) максимальная спектральная плотность энергетической светимости тела.

Задача 6.

Максимальная скорость фотоэлектронов, вырываемых из металла светом с длиной волны $\lambda=0.4$ мкм , равна 400 км / c . Определить работу выхода электронов из этого металла.

Задача 7.

Частица в одномерной прямоугольной потенциальной яме шириной L с бесконечно высокими стенками находится в возбужденном состоянии, характеризуемом

волновой функцией
$$\psi = \sqrt{\frac{2}{L}} \sin \frac{2\pi x}{L}$$
. Определить вероятность обнаружения частицы в области $\frac{3}{8}L \le x \le \frac{5}{8}L$.

Ответы:

Задача 1. n=1/27

Задача 2. і=3, светлое пятно

Задача 3. $(x_2 - x_1) = 0.312$ м

Задача 4. Уменьшится в 8,95 раза

Задача 5. Энергетическая светимость увеличилась в 81 раз, максимальная спектральная плотность энергетической светимости увеличилась в 243 раза

Задача 6. А=2,64 эВ

Задача 7. W=0,09

Критерии оценивания:

Результаты контрольной работы определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если все 5 задач, входящие в контрольную работу, решены правильно. Оценка «хорошо» выставляется, если решены правильно 4 задачи, оценка «удовлетворительно» - если правильно решены 3 задачи. В остальных случаях выставляется оценка «неудовлетворительно».

В 7-ом семестре предусмотрена промежуточная аттестация в форме экзамена. К экзамену допускаются студенты, предварительно выполнившие на положительную оценку контрольную работу. Экзамен проводится следующим образом. Обучающемуся предлагается взять экзаменационный билет, содержащий два основных вопроса. Типовые экзаменационные билеты имеют следующий вид:

Томский государственный университет Институт прикладной математики и компьютерных наук Кафедра прикладной математики

Физика, часть III: Оптика и квантовая физика

Экзаменационный билет № 1

- 1. Дифракция Фраунгофера на круглом отверстии. Разрешающая способность оптических приборов.
- 2. Фотоны и их свойства. Световое давление.

Зав. кафедрой, д.ф.-м.н., профессор _____/Л.А. Нежельская/

Томский государственный университет Институт прикладной математики и компьютерных наук Кафедра прикладной математики

Экзаменационный билет № 2

Физика, часть III: Оптика и квантовая	я физика			
Томский государственный университет Институт прикладной математики и компьютерных наук Кафедра прикладной математики				
Зав. кафедрой, д.фм.н., профессор	/Л.А. Нежельская/			
2. Стационарное уравнение Шредингера.				
1. Искусственная оптическая анизотропия. Явление фотоуправительные фотоуправительным просток при	ругости.			

Экзаменационный билет № 3

- 1. Анализаторы поляризации света. Закон Малюса.
- 2. Пространственное квантование. Магнитное квантовое число.

Зав. кафедрой, д.ф.-м.н., профессор

/Л.А. Нежельская/

Дополнительно обучающемуся задаются 2-3 вопроса из нижеследующего перечня. Дополнительные вопросы для проведения промежуточной аттестации в форме

экзамена (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3):

- 1. Законы отражения и преломления.
- 2. Полное отражение.
- 1. Пространственная и временная когерентность светового поля.
- 2. Сущность интерференции. Интерференционная картина.
- 3. Интерферометры.
- 4. Сущность явления дифракции. Зоны Френеля.
- 5. Дифракция Френеля на малом отверстии в экране.
- 6. Дифракция Френеля на небольшом круглом диске.
- 7. Поглощение света. Закон Бугера-Ламберта.
- 8. Рассеяние света.
- 9. Дисперсия света.
- 10. Поляризация света при отражении и преломлении на границе раздела сред.
- 11. Двойное лучепреломление.

- 12. Призма Николя.
- 13. Закон Малюса.
- 14. Явление фотоупругости.
- 15. Эффект Коттона-Мутона.
- 16. Абсолютно черное тело.
- 17. Закон Кирхгофа.
- 18. Законы теплового излучения черного тела.
- 19. Квантовая гипотеза Планка.
- 20. Фотоэффект. Основные законы фотоэффекта.
- 21. Фотоны и их свойства.
- 22. Эффект Комптона.
- 23. Гипотеза де Бройля. Волновая функция.
- 24. Временное и стационарное уравнения Шредингера.
- 25. Соотношения неопределенностей Гейзенберга.
- 26. Туннельный эффект.
- 27. Квантовые числа, характеризующие состояние электрона.
- 28. Принцип Паули.
- 29. Порядок заполнения энергетических состояний в многоэлектронных атомах.

Критерии формирования оценок при проведении экзамена

Оценки при проведении экзамена формируются в соответствии с нижеприведенной таблицей.

2	3	4	5
Не ответил ни на	Ответил на один из	Ответил на оба	Уверенно и
один из основных	основных вопросов	вопроса,	правильно ответил
вопросов.	и на два из трех	содержащихся в	на все основные и
	дополнительных	экзаменационном	дополнительные
	вопросов.	билете, и на	вопросы.
		дополнительные	
		вопросы, но с	
		замечаниями.	

4.7 Оценочные материалы для проверки остаточных знаний (сформированности компетенций) (7-ой семестр)

Для проверки остаточных знаний в 7-ом семестре используются следующие вопросы (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3)

- 1. Законы отражения и преломления.
- 3. Сущность интерференции. Интерференционная картина.
- 4. Интерферометры.
- 5. Сущность явления дифракции. Зоны Френеля.
- 6. Дифракция Френеля на небольшом круглом диске.
- 7. Поглощение света. Закон Бугера-Ламберта.
- 8. Рассеяние света.
- 9. Дисперсия света.
- 10. Поляризация света при отражении и преломлении на границе раздела сред.
- 11. Двойное лучепреломление.
- 12. Абсолютно черное тело.

- 13. Законы теплового излучения черного тела.
- 14. Квантовая гипотеза Планка.
- 15. Фотоэффект. Основные законы фотоэффекта.
- 16. Фотоны и их свойства.
- 17. Гипотеза де Бройля. Волновая функция.
- 18. Временное и стационарное уравнения Шредингера.
- 19. Соотношения неопределенностей Гейзенберга.
- 20. Туннельный эффект.
- 21. Квантовые числа, характеризующие состояние электрона.
- 22. Принцип Паули.
- 23. Порядок заполнения энергетических состояний в многоэлектронных атомах.

Информация о разработчиках

Дмитренко Анатолий Григорьевич, доктор физико-математических наук, профессор, кафедра прикладной математики, профессор