Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Моделирование в биомеханике

по направлению подготовки

15.04.03 Прикладная механика

Направленность (профиль) подготовки: Компьютерный инжиниринг конструкций, биомеханических систем и материалов

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП В.А. Скрипняк Е.С. Марченко

Председатель УМК В.А. Скрипняк

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать и создавать критерии оценки результатов исследований;.
- ПК-2 Способен самостоятельно выполнять научные исследования в области прикладной механики, решать сложные научно-технические задачи, которые для своего изучения требуют разработки и применения математических и компьютерных моделей, применения программных систем мультидисциплинарного анализа (САЕ-систем мирового уровня).
- ПК-4 Способен применять физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 1.1 Знать современные проблемы и задачи прикладной механики, приоритетные направления научных и прикладных работ в области прикладной механики, подходы и методы формулировки критериев оценки решения задач в области прикладной механики
- ИОПК 1.2 Уметь формулировать цели и задачи исследования при решении приоритетных задач прикладной механики, выбирать и создавать критерии оценки решений задач прикладной механики
- ИОПК 1.3 Владеть навыками формулировки целей и задач исследования при решении приоритетных задач прикладной механики, выбирать и создавать критерии оценки решений задач прикладной механики
- ИПК 2.1 Знать: математические и компьютерные модели, программные системы мультидисциплинарного анализа (САЕ-системы мирового уровня), используемые для решения поставленных научно-технических задач
- ИПК 2.2 Уметь самостоятельно выполнять научные исследования в области прикладной механики, решать сложные научно-технические задачи, которые для своего изучения требуют разработки и применения математических и компьютерных моделей, применения программных систем мультидисциплинарного анализа (САЕ-систем мирового уровня)
- ИПК 2.3 Владеть навыками самостоятельного выполнения научных исследований в области прикладной механики, решения сложных научно-технических задач
- ИПК 4.1 Знать физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования, применяемые в процессе профессиональной деятельности
- ИПК 4.2 Уметь применять физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности
- ИПК 4.3 Владеть навыками применения физико-математического аппарата, теоретических, расчетных и экспериментальных методов исследования, методов математического и компьютерного моделирования в процессе профессиональной деятельности

2. Задачи освоения дисциплины

Освоить аппарат современных методов моделирования в биомеханике на основе подхода частиц.

– Научиться применять понятийный аппарат современных методов моделирования в биомеханике на основе подхода частиц для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль №2 «Механика биокомпозитов, получение и моделирование их структуры и свойств».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Расчеты на прочность в биомеханике; Анатомия человека.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

- -лекции: 12 ч.
- -практические занятия: 26 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основные понятия.

Понятие модели и моделирования. Основные методы численного моделирования, применяемые в физике и механике твёрдого тела. Что такое модель и моделирование. Типы моделей. Компьютерное моделирование. Дискретные и континуальные модели в физике и механике.

Тема 2. Метод молекулярной динамики.

Основные положения метода молекулярной динамики. Уравнения движения. Выбор граничных условий. Специфика задания начальных условий. Потенциалы межатомного взаимодействия. Парное приближение и многочастичные потенциалы. Алгоритмы численного интегрирования. Расчет макроскопических свойств атомных систем. Методы и программы для анализа результатов моделирования. Примеры применения метода молекулярной динамики.

Тема 3. Методы мезочастиц.

Метод мезочастиц А.М. Кривцова. Упругие характеристики для различных упаковок частиц. Метод отдельных элементов П.А. Кундалла. Силы межчастичного взаимодействия в упругих и упуругопластических средах. Метод мезочастиц Г.П. Остермайера, особенности описания диссипативных процессов.

Тема 4. Метод клеточных автоматов.

Основные положения и определения метода. Классификация клеточных автоматов. Понятие активной среды. Типы клеточных автоматов, используемых при описании распространения возбуждений в активных средах. Газодинамические клеточные автоматы. ННР и FHP модели. Проблемы моделирования трёхмерных задач. Моделирование деформируемого твёрдого тела (упругие волны, разрушение).

Тема 5. Метод подвижных клеточных автоматов.

Проблемы развития дискретного подхода в механике. Основные положения метода. Размер и форма подвижных клеточных автоматов. Уравнения движения как уравнения переноса. Функции отклика центрального и тангенциального взаимодействия. Объёмная составляющая взаимодействия. Моделирование разрушения как переключения состояния пар. Совместное использование метода подвижных клеточных автоматов и численных методов континуальной механики.

Тема 6. Бессеточные методы континуальной механики.

Гидродинамика сглаженных частиц. Алгоритм обобщённых частиц. Точечный метод конечных элементов.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, устного опроса, выполнении индивидуальных заданий (рефератов) и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность зачета с оценкой 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=24746
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Рит М. Наноконструирование в науке и технике. Введение в мир нанорасчета. Пер. с англ. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2005. 160 с.
- Кривцов А.М. Деформирование и разрушение твердых тел с микроструктурой. М: ФИЗМАТЛИТ, 2007. 304 с.
 - Лоскутов А.Ю., Михайлов А.С. Введение в синергетику. М: Наука, 1990. 272 с.
- Трубецков Д.И. Введение в синергетику. Хаос и структуры. М: Едиториал УРСС. 2004. 235 с.
- Псахье С.Г., Смолин А.Ю., Дмитриев А.И., Шилько Е.В., Коростелев С.Ю. Метод подвижных клеточных автоматов как направление дискретной вычислительной механики

- // Чебышевский сборник. 2017. т. 18, № 3(63). С. 439–460. https://doi.org/10.22405/2226-8383-2017-18-3-439-460
- Thompson, A.P., Aktulga, H.M., Berger, R., et al. LAMMPS a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Comp. Phys. Comm. 2022. v. 271. 10817. https://doi.org/10.1016/j.cpc.2021.108171
- Smolin A.Yu., Smolin I.Yu., Shilko E.V., Stefanov Yu.P., Psakhie S.G. Coupling of Discrete and Continuum Approaches in Modeling the Behavior of Materials / in "Handbook of Mechanics of Materials" S. Schmauder, C.-S. Chen, K. K. Chawla, N. Chawla, W. Chen, Y. Kagawa Eds. Springer Singapore. 2019. https://doi.org/10.1007/978-981-10-6884-3_35
- -Psakhie S.G., Smolin A.Yu., Shilko E.V., Dimaki A.V. Modeling the Behavior of Complex Media by Jointly Using Discrete and Continuum Approaches / in "Handbook of Mechanics of Materials" S. Schmauder, C.-S. Chen, K. K. Chawla, N. Chawla, W. Chen, Y. Kagawa Eds. Springer Singapore. 2019. https://doi.org/10.1007/978-981-10-6884-3_79

б) дополнительная литература:

- Salman N., Wilson M., Neville A. and Smolin A.Y. Implementation of MCA in the framework of LIGGGHTS // V International Conference on Particle-based Methods Fundamentals and Applications. P. Wriggers, M. Bischoff, E. Oñate, D.R.J. Owen and T. Zohdi (Eds.). 2017. P. 767–777.
- Shilko E.V., Psakhie S.G., Schmauder S., Popov V.L., Astafurov S.V., Smolin A.Yu. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure // Computational Materials Science. 2015. V. 102. P. 267–285. https://doi.org/10.1016/j.commatsci.2015.02.026
- Введение в математическое моделирование. Учебное пособие / В.Н.Ашихмин и др. Под ред. П.В.Трусова. М.: Интермет Инжиниринг. 2000. 336 с.
- Математическое моделирование: Проблемы и результаты.— М: Наука, 2003.— 478 с.
- Гулд X., Тобочник Я. Компьютерное моделирование в физике: в 2-х частях. Часть 1. Пер. с англ. М: Мир, 1990. 349 с.
- Остермайер Г.П. Метод мезоскопических частиц для описания термомеханических и фрикционных процессов // Физическая Мезомеханика. 1999. №6. С. 25-32.
 - Поттер Д. Вычислительные методы в физике. М.: Мир, 1975. 218 с.
- Остермайер Г.П., Попов В.Л. Многочастичные неравновесные потенциалы взаимодействия в методе частиц // Физическая Мезомеханика. 1999. №6. С. 33-39.

в) ресурсы сети Интернет:

- Электронная библиотека «EqWorld Мир математических уравнений» в Институте проблем механики PAH (http://eqworld.ipmnet.ru/ru/library/mechanics.htm).
 - https://www.wolframscience.com/
 - https://www.itascacg.com/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Программы пакета LAMMPS;
- Программа MCA2D Load Test.

б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index

14. Материально-техническое обеспечение

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Для проведения практических занятий и выполнения индивидуального расчетного задания требуется компьютерный класс ПЭВМ с микропроцессором не ниже Intel Core i3, объёмом ПЗУ не меньше 200 ГБ, объёмом ОЗУ не меньше 2 ГБ.

15. Информация о разработчиках

Смолин Алексей Юрьевич, д.ф.-м.н., профессор, профессор кафедры механики деформируемого твердого тела ТГУ.