Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Теория чисел

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен на основании совокупности математических методов разрабатывать, обосновывать и реализовывать процедуры решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-3.1 Демонстрирует навыки выполнения стандартных действий, решения типовых задач, формулируемых в рамках базовых математических дисциплин

ИОПК-3.2 Осуществляет применение основных понятий, фактов, концепций, принципов математики и информатики для решения задач профессиональной деятельности

ИОПК-3.3 Выявляет научную сущность проблем, возникающих в ходе профессиональной деятельности, и применяет соответствующий математический аппарат для их формализации, анализа и выработки решения

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля: контрольная работа (ИОПК-3.1);

Пример.

1. Решите сравнение $8 x \equiv 13 (19)$.

2. Решить систему сравнений
$$\begin{cases} x \equiv 1(3) \\ x \equiv 2(5) \\ x \equiv 1(7) \end{cases}$$

- 3. Найдите каноническое разложение числа 20! на простые множители.
- 4 Пусть n = 225.

Найти: а) число делителей б) сумму делителей в) функцию Эйлера.

- 5. Представить рациональное число 43/30 в виде цепной дроби, затем с помощью подходящих дробей восстановить исходное число.
- 6. Найти иррациональное число, представленное данной периодической цепной дробью: [(2,1)]
- 7. Найти остаток от деления $208^{362} + 17^{184}$ на 19
- 8. Решить сравнение методом понижения степени: $x^8 + x^6 + 4x^5 + 2x^3 4x + 1 \equiv 0(5)$.
- 9. Решить сравнение по составному модулю: $x^3 + x^2 + 3x + 2 \equiv 0(35)$.
- 10. Выяснить с помощью символа Лежандра, разрешимо ли сравнение $x^2 \equiv 31(43)$.
- 11. Найти количество первообразных корней по модулю 97.

Ответы.

1.
$$\{4+19k\}$$
 2. $\{22+105k\}$ 3. $2^{18}\cdot 3^8\cdot 5^4\cdot 7^2\cdot 11\cdot 13\cdot 17\cdot 19$ 4. а) 9 б) 403 в) 120 5. $[1,2,3,4]$ 6. $1+\sqrt{3}$ 7. 17 8. $\{1+5k\}$ и $\{3+5k\}$. 9. $\{22+35k\}$ 10. Да (символ Лежандра равен 1) 11. 32.

Критерии оценивания: суммарно за всю работу в семестре студент можно получить $3.5\,$ балла из $5.0,\,$ то есть $70\%\,$ от итоговой оценки. Ещё $30\%\,$ - за ответ по теории на экзамене.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзамен проводится по билетам, билет состоит из 2 теоретических вопросов. За верный ответ по теории студент получает 1,5 балла из 5 баллов оценки. При сложении с семестровым рейтингом за практику (3,5 балла из итоговой оценки) студент получает 5,0 баллов. В случае получения дробной оценки, итоговая оценка определяется по правилам округления.

Вопросы к экзамену на доказательства (ИОПК-3.2, ИОПК-3.3).

- 1. Докажите, что остаток r_k , полученный при алгоритме Евклида, является общим делителем для a,b
- 2. Докажите, что остаток r_k , полученный при алгоритме Евклида, является аибольшим среди общих делителей.
- 3. Доказать рекурсивные формулы для коэффициентов Безу: $u_{\scriptscriptstyle k} = u_{\scriptscriptstyle k-2} q_{\scriptscriptstyle k} u_{\scriptscriptstyle k-1}$,

$$v_{k} = v_{k-2} - q_{k} v_{k-1}$$

- 4. Любое из доказательств теоремы Евклида о бесконечности множества простых чисел.
- 5. Докажите, что для любого $k \ge 1$ найдётся k составных чисел подряд.
- 6. Доказать, что если $n \in N$ не делится ни на одно простое число, меньшее или равное [\sqrt{n}], то оно простое.
- 7. Основная теорема арифметики: Каждое натуральное число n>1 может быть представлено в виде произведения простых чисел: $n=p_1\cdot p_2\cdot ...\cdot p_k$, две таких записи могут отличаться лишь порядком следования сомножителей.
- 8. Доказать, что если р простое, то \sqrt{p} иррационально.
- 9. Пусть $\ a=p_1^{s_1}\cdot...\cdot p_m^{s_m}\,,\ \ b=p_1^{t_1}\cdot...\cdot p_m^{t_m}$, доказать, что

НОД (a,b) =
$$p_1^{k_1} \cdot ... \cdot p_m^{k_m}$$
, где $k_i = \min(s_i, t_i)$,

- 10. Доказать, что a,b = ab.
- 11. Доказать, что для всякого чётного $n \ge 4$, число $2^n 1$ составное.
- 12. Доказать, что для всякого нечётного составного числа $n \in \mathbb{N}, 2^n-1$ составное.
- 13. Доказать, что число вида $2^n + 1$ может быть простым лишь при $n = 2^k$.
- 14. Доказать, что всякий многочлен с целыми коэффициентами, при некотором натуральном значении x = n принимает значение, равное составному числу.
- 15. Доказать, что показатель простого числа р в разложении п! равен

$$\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \ldots + \left\lfloor \frac{n}{p^m} \right\rfloor$$
, где p^m последнее число, не превосходящее n.

16. Доказать формулу числа натуральных делителей: если $n=p_1^{k_1}\cdot p_2^{k_2}\cdot ...\cdot p_s^{k_s}$, то

$$\tau(n) = (k_1 + 1) \cdot (k_2 + 1) \cdot \dots \cdot (k_s + 1).$$

17. Доказать формулу суммы всех натуральных делителей.

Если
$$n=p_1^{k_1}\cdot p_2^{k_2}\cdot ...\cdot p_s^{k_s}$$
 , то $\sigma(n)=\frac{p_1^{k_1+1}-1}{p_1-1}\cdot ...\cdot \frac{p_s^{k_s+1}-1}{p_s-1}$.

18. Доказать теорему о сумме f(d) по всем натуральным делителям).

Пусть
$$n = p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_s^{k_s}$$
 . Тогда

$$\sum_{d|n} f(d) = (1 + f(p_1) + f(p_1^2) \dots + f(p_1^{k_1})) \cdot \dots \cdot (1 + f(p_s) + f(p_s^2) + \dots + f(p_s^{k_s}))$$

- 19. Доказать, что если $n = 2^{k-1}(2^k 1)$ то п является совершенным
- 20. Доказать, что если чётное число совершенно, то оно имеет вид $n=2^{k-1}(2^k-1)$, где $k\geq 2$, $p=2^k-1$ простое.
- 21. Доказать свойство суммы функции Мёбиуса по всем делителям: $\sum_{d|n} \mu(d) = \begin{cases} 1 & (n=1) \\ 0 & (n>1) \end{cases}$
- 22. Доказать, что $\varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$.
- 23. Доказать $\varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1)$ (p,q простые).

24. Доказать
$$\varphi(m) = m \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) ... \left(1 - \frac{1}{p_k}\right)$$
.

- 25. Доказать, что $\varphi(n^k) = n^{k-1} \varphi(n)$.
- 26. Если (m,n)=d , то $\varphi(mn)=\varphi(m)\varphi(n)\frac{d}{\varphi(d)}$.
- 27. Доказать формулу Гаусса $\sum_{d|n} \varphi(d) = n$
- 28. Доказать, что число п простое $\Leftrightarrow \varphi(n) = n \cdot \tau(n) \sigma(n)$.
- 29. Доказать, что $\tau(n)$ нечётно $\Leftrightarrow n = k^2$.
- 30. Доказать, что среднее гармоническое по всем делителям = $\tau(n) \frac{n}{\sigma(n)}$.
- 31. Доказать, что всякое чётное совершенное число является числом Оре.
- 32. Вывести рекурсивные формулы вычисления числителя и знаменателя подходящих дробей:

$$\frac{P_n}{Q_n} = \frac{P_{n-1}q_n + P_{n-2}}{Q_{n-1}q_n + Q_{n-2}}.$$

- 33. Доказать, что для подходящих дробей верно равенство: $P_n Q_{n-1} P_{n-1} Q_n = (-1)^n$.
- 34. Доказать, что для подходящих дробей верно равенство:

$$P_n Q_{n-2} - P_{n-2} Q_n = (-1)^{n-1} q_n$$

- 35. Вывести формулы вычисления подходящих дробей через определители.
- 36. Доказать, что если цепная дробь периодическая, то соответствующее ей число есть квадратичная иррациональность.
- 37. Доказать, что $A\alpha^2 + B\alpha + C = 0$, то при замене $\alpha = \frac{Px + R}{Qx + S}$, при условии |PS QR| = 1

получится квадратичное уравнение с тем же дискриминантом.

- 38. (Теорема Лагранжа). Доказать, что любая квадратичная иррациональность разлагается в периодическую цепную дробь.
- 39. Z_n кольцо вычетов. Доказать: $(k,n)=1 \Leftrightarrow \bar{k}$ обратимый.
- 40. Z_n кольцо вычетов. Доказать: (k,n)=1 $\Leftrightarrow \bar{k}$ не делитель нуля.
- 41. Если $(a,m)=1, \ \{x_1,...,x_m\}$ полная система вычетов по модулю m , то числа вида $\{ax_1+b,...,ax_m+b\}$ тоже есть полная система вычетов по модулю m .
- 41. Если $(a,m)=1, \ \{x_1,...,x_{\varphi(m)}\}$ приведённая система вычетов по модулю m , то $\{ax_1,...,ax_{\varphi(m)}\}$ тоже образуют приведённую систему вычетов по модулю m .
- 43. Доказать, что:
- 1) Если (a, m) = 1, то $ax \equiv b(m)$ имеет единственное решение.
- 2) Если $(a,m)=d\neq 1$, b не делится на d, то $ax\equiv b(m)$ неразрешимо.
- 3) Если $(a,m) = d \neq 1$, и b : d, то $ax \equiv b(m)$ имеет d решений.
- 44. Теорема Эйлера. $(a, m) = 1 \implies a^{\varphi(m)} \equiv 1(m)$.
- 45. Докажите, что для любого простого числа p и $a \in Z$, $a^{p-1} \equiv l(p)$. (малая теорема Ферма).
- 46. Пусть $n=p_1\cdot p_2\cdot ...\cdot p_k$, и (n-1): (p_i-1) $\forall i=1,...,k$. Докажите, что n есть число Кармайкла (абсолютно псевдопростое).
- 47. Пусть $p_1,...,p_k$ простые числа, тогда существует число x,

такое что: $x \equiv r_1(p_1),...,x \equiv r_k(p_k)$ (китайская теорема об остатках).

- 48. Докажите, что всякое сравнение $f(x) = \alpha_n x^n + ... + \alpha_1 x + \alpha_0 \equiv 0(p)$ степени $n \ge p$ равносильно некоторому сравнению степени не выше p-1.
- 49. Докажите, что если x_1 решение сравнения $f(x) \equiv 0(p)$, то это сравнение равносильно
- $(x-x_1)q(x)\equiv 0(p)$, где q(x) неполное частное от деления f(x) на $(x-x_1)$.
- 50. Докажите, что p является простым $\Leftrightarrow ((p-1)!+1) \equiv 0(p)$ (теорема Вильсона).
- 51. Докажите, что если $f(a) \equiv 0(p^k)$ и f'(a) не делится на р, то существует такое t, что $f(a+p^kt) \equiv 0(p^{k+1}).$

- 52. Докажите, что если p простое нечётное число, то либо $d^{\frac{p-1}{2}} \equiv \mathrm{l}(p)$, либо $d^{\frac{p-1}{2}} \equiv -\mathrm{l}(p)$.
- 53. Докажите, что существует ровно $\frac{p-1}{2}$ квадратичных вычетов по простому нечётному модулю p .
- 54. Докажите, что d является квадратичным вычетом по простому нечётному модулю $p \Leftrightarrow$

$$d^{\frac{p-1}{2}}\equiv \mathrm{l}(p)$$
, и не является квадратичным вычетом $\Leftrightarrow d^{\frac{p-1}{2}}\equiv -\mathrm{l}(p)$ (критерий Эйлера).

- 55. Докажите, что $\,p-1\,$ является квадратичным вычетом по модулю $\,p\,$ тогда и только тогда, когда $\,p=4k+1\,$.
- 56. Критерий Гаусса. Докажите, что $\left(\frac{a}{p}\right) = (-1)^t$, где t количество чисел $\left\{a,2a,...,\frac{p-1}{2}a\right\}$, для которых наименьший по модулю вычет отрицателен.
- 57. Докажите, что $x^2 \equiv a(p)$ разрешимо $\Leftrightarrow \sum_{x=1}^{p-1} \left[\frac{2ax}{p} \right]$ чётно.
- 58. Доказать $\left(\frac{2}{p}\right) = \begin{cases} 1 & ecnu \ p \equiv \pm 1(8) \\ -1 & ecnu \ p \equiv \pm 3(8) \end{cases}$
- 59. Доказать $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.
- 60. Доказать, что для нечётного a, $x^2 \equiv a(p)$ разрешимо $\Leftrightarrow \sum_{x=1}^{\frac{p-1}{2}} \left[\frac{ax}{p} \right]$ чётно.
- 61. Критерий квадратичной взаимности.

Для двух простых нечётных чисел p,q:
$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = \left(-1\right)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

62. Докажите, что для составного числа вида n=pq, где p,q нечётны, количество квадратичных

вычетов по модулю п равно
$$\frac{p+1}{2} \cdot \frac{q+1}{2}$$
, а в общем случае $\prod_{i=1}^k \frac{p_i+1}{2}$.

- 63. Докажите, что если $\frac{pq+1}{2} > \frac{p+1}{2} \cdot \frac{q+1}{2}$, то найдутся такие x,y что $x^2 y^2 \stackrel{.}{:} pq$.
- 64. Докажите, что если a нечётно, то решениями сравнения $x^2 \equiv a(2^k)$ могут быть только числа вида 8k+1.
- 65. Доказать свойство символа Якоби: $\left(\frac{-1}{P}\right) = (-1)^{\frac{P-1}{2}}$.
- 66. Доказать, что $a^n \equiv \mathbb{I}(m) \Rightarrow n : P_m(a)$ и следствие: $\varphi(m) : P_m(a)$.

- 67. Доказать, что если $P_m(a) = k$, то во множестве $\{a^0, a^1, ..., a^{k-1}\}$ все элементы попарно не сравнимы.
- 67. Доказать, что если $P_m(a) = k$, то $a^s \equiv a^t(m) \iff s \equiv t(k)$.
- 68. Доказать, что если (a,m)=1, то $a^{L(m)} \equiv 1(m)$.
- 69. Доказать, что если р простое число, и $\varphi(p) = p 1 = q_1^{b_1} \cdot \dots \cdot q_s^{b_s}$, то:
- a первообразный $\Leftrightarrow a^{\frac{\varphi(p)}{q_1}},...,a^{\frac{\varphi(p)}{q_s}}$ все не сравнимы с 1 по модулю р.
- 70. Доказать, что показатель $P_{2^n}(a) \le 2^{n-2}$ при нечётном a и $n \ge 3$.
- 71. Пусть р простое. Доказать, что первообразный корень по модулю p^2 является также первообразным по модулю р.
- 72. Доказать, что если a первообразный по модулю p, и a^{p-1} не сравнимо с 1 по модулю p^2 , то a первообразный и по модулю p^2 .
- 73. Доказать, что если a первообразный по модулю p, то a или a+p первообразный по модулю p^2 .
- 74. Доказать свойства индексов. $ind_abc = ind_ab + ind_ac$, $ind_a(b^n) = n \cdot ind_ab$
- 75. Доказать, что если простое нечётное число имеет вид p = 4k + 1, то существует $q \in N$, такое, что $q^2 \equiv -1 \pmod{p}$.
- 76. Теорема Эйлера-Ферма. Если простое нечётное число имеет вид 4k+1, то оно представимо в виде суммы квадратов $x^2 + y^2$.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

В качестве материалов для проверки остаточных знаний можно использовать те же самые контрольные задачи, которые студенты решают на контрольных работах в течение семестра.

Информация о разработчиках

Приходовский Михаил Анатольевич, к.ф.м.н., доцент кафедры компьютерной безопасности ИПМКН ТГУ.