Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Молекулярная биология

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.

ОПК-3 Способен применять знание основ эволюционной теории, использовать современные представления о структурно-функциональной организации генетической программы живых объектов и методы молекулярной биологии, генетики и биологии развития для исследования механизмов онтогенеза и филогенеза в профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-2.1 Демонстрирует понимание принципов структурно-функциональной организации живых систем

ИОПК-3.2 Применяет методы молекулярной биологии, генетики и биологии развития для исследования механизмов онтогенеза и филогенеза в профессиональной деятельности

2. Задачи освоения дисциплины

- Приобрести знания о строении белков и нуклеиновых кислот, о структурной организации и классификации генов в геноме.
- Знать современные представления о связи между структурной организацией информационных макромолекул и их биологическими функциями в клетке.
- Знать механизмы реализации фундаментальных генетических процессов у про- и эукариот: репликации, транскрипции, трансляции и их регуляции в клетке.
- Приобрести современные представления о механизмах репарации повреждённой ДНК, проявлениях нестабильности генома и о молекулярно-биологических основах возникновения жизни на Земле.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Восьмой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Органическая химия», «Биохимия», «Генетика», «Цитология».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых:

-лекции: 20 ч.

-семинар: 4 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Центральная догма молекулярной биологии. Генетический код. Предмет и объект молекулярной биологии. Методы молекулярной биологии. История молекулярной биологии. Центральная догма молекулярной биологии. Генетический код. Первые представления о генетическом коде. Бубновый код Г. Гамова. Неперекрываемость, триплетность и компактность генетического кода. Однозначность, вырожденность, старт и стоп кодоны. Помехоустойчивость и универсальность генетического кода. Манипуляции с генетическим кодом: "урезанный" и полусинтетический генетические коды.

Тема 2. Белки.

История открытия и изучения белков. Первичная структура белка. Вторичная структура белков. Третичная структура белка. Четвертичная структура белка. Функции белка. ДНК-связывающие белки.

Тема 3. Нуклеиновые кислоты.

Открытие и нуклеиновых кислот. Первичная структура нуклеиновых кислот. Физикохимические особенности рибо- и дезоксирибонуклеиновых кислот. Вторичная структура РНК. Третичная структура РНК. Разнообразие РНК и их функции. Некодирующие РНК эукариот. Некодирующие РНК у прокариот. Гипотеза "мира РНК". Пять доказательств информационной роли ДНК. Четыре предпосылки открытия двойной спирали ДНК. Принципы организации двойной спирали ДНК по Уотсону-Крику. Физико-химические свойства ДНК. Формы ДНК: А-, В-, Z-, Н-, НЈ-, G-, I-Кольцевая ДНК. Циркулом. Суперскручивание (число зацеплений, твист и райзинг, топоизомеразы). Необычные структуры, которые образуют ДНК. Три функции ДНК.

Тема 4. Транскрипция. Процессинг РНК. Регуляция экспрессии генов. Ферментативная активность РНК-полимераз. Принципы транскрипции ДНК. Структура РНК-полимеразы прокариот. Транскрипция ДНК прокариот и ее этапы. Инициация транскрипции у прокариот. Терминация транскрипции. Rho-зависимая терминация. Нештатное прерывание элонгации. Шесть особенностей организации транскрипции ДНК у эукариот, по сравнению с прокариотами. Разнообразие РНК-полимераз эукариот. Структура РНК-полимераз эукариот. Инициация транскрипции у эукариот. Промотор у эукариот. Энхансеры и сайленсеры. Процессинг РНК у эукариот. Процессинг мРНК. Кэпирование. Сплайсинг. Редкие механизмы сплайсинга: автосплайсинг и ферментативный сплайсинг. Альтернативный и транс-сплайсинг. Обрезание 3'-НТР и полиаденилирование. Редактирование мРНК. Процессинг тРНК. Процессинг рРНК. Регуляция транскрипции у прокариот. Триптофановый оперон пример негативной репрессии. Аттенуация.

Тема 5. Обратная транскрипция.

Обратная транскрипция у ВИЧ-1. Фермент обратной транскрипции. Активность обратной транскриптазы.

Тема 6. Трансляция.

Компоненты системы трансляции у прокариот. Структурные особенности тРНК необходимые в процессе трансляци. Амино-ацил-тРНК-синтетазы (арсазы или кодазы). Молекулярная структура рибосом прокариот и эукариот. Центры функциональной активности рибосом. Факторы трансляции. Инициация трансляции у прокариот. Функции малой и большой субьединиц рибосомы в ходе инициации

трансляции. Реакция транспептидации в элонгации трансляции. Реакция транслокации в элонгации трансляции. Терминация трансляции. Процессинг белков.

Тема 7. Репликация ДНК.

Шесть принципов репликации ДНК. ДНК-зависимые ДНК полимеразы прокариот. Домены и ферментативная активность. Инициация репликации у прокариот. Репликативные вилки и топологическая сложность репликации. Репликаза. Субьединицы и их функции. Фрагменты Оказаки. Репликация на "отстающей цепи" ДНК. Семь особенностей репликации ДНК у эукариот. Проблема репликации ДНК на теломерах у эукариот. Лимит Хэйфлика. Теломерный повтор. Удлинение теломер. Теломераза. Репликация и метилирование ДНК.

Тема 8. Репарация и рекомбинация.

Типы репарации у прокариот. Типы репарации у эукариот. Ферменты репарации. Рекомбинация.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в восьмом семестре проводится в устной форме по билетам. Билет состоит из двух частей.

Частью процедуры зачета является прохождение студентом всех тестов по основным темам курса на сумму баллов не менее 50% от максимально возможной. Тесты проверяют общую готовность студента к применению индикаторов компетенций ИОПК-2.1., ИОПК-3.2. Если студент не сдал тест, то на устном зачете он получает дополнительный вопрос по несданной теме.

Продолжительность зачета 1 час.

Вопросы к зачету по дисциплине «Молекулярная биология»

ИОПК-2.1 Демонстрирует понимание принципов структурно-функциональной организации живых систем

- 1. Центральная догма молекулярной биологии
- 2. Первые представления о генетическом коде. Бубновый код Г. Гамова.
- 3. Неперекрываемость, триплетность и компактность генетического кода
- 4. Однозначность, вырожденность, старт и стоп кодоны
- 5. Помехоустойчивость и универсальность генетического кода.
- 6. Первичная структура белка
- 7. Вторичная структура белков
- 8. Третичная структура белка
- 9. Четвертичная структура белка
- 10. Функции белков
- 11. Первичная структура нуклеиновых кислот
- 12. Физико-химические особенности рибо- и дезоксирибонуклеиновых кислот
- 13. Вторичная структура РНК

- 14. Третичная структура РНК.
- 15. Разнообразие РНК и их функции
- 16. Некодирующие РНК эукариот и прокариот
- 17. Четыре предпосылки открытия двойной спирали ДНК
- 18. Принципы организации двойной спирали ДНК по Уотсону-Крику:
- 19. Физико-химические свойства ДНК
- 20. Формы ДНК: А-, В-, Z-, Н-, НЈ-, G-, І-
- 21. Кольцевая ДНК. Циркулом. Суперскручивание.
- 22. Ферментативная активность РНК-полимераз

ИОПК-3.2 Применяет методы молекулярной биологии, генетики и биологии развития для исследования механизмов онтогенеза и филогенеза в профессиональной деятельности

- 23. Принципы транскрипции ДНК
- 24. Структура РНК-полимеразы прокариот
- 25. Транскрипция ДНК прокариот и ее этапы
- 26. Инициация транскрипции у прокариот
- 27. Терминация транскрипции. Rho-зависимая терминация. Нештатное прерывание элонгации
- 28. Шесть особенностей организации транскрипции ДНК у эукариот (по сравнению с прокариотами)
- 29. Разнообразие РНК-полимераз эукариот
- 30. Структура РНК-полимераз эукариот
- 31. Инициация транскрипции у эукариот. Промотор у эукариот
- 32. Энхансеры и сайленсеры
- 33. Процессинг РНК у эукариот
- 34. Процессинг мРНК
- 35. Редкие механизмы сплайсинга: автосплайсинг и ферментативный сплайсинг
- 36. Редактирование мРНК
- 37. Процессинг тРНК
- 38. Процессинг рРНК
- 39. Регуляция транскрипции у прокариот
- 40. Обратная транскрипция у ВИЧ-1
- 41. Компоненты системы трансляции у прокариот
- 42. Структурные особенности тРНК необходимые в процессе трансляци
- 43. Амино-ацил-тРНК-синтетазы (арсазы или кодазы)
- 44. Молекулярная структура рибосом прокариот и эукариот
- 45. Центры функциональной активности рибосом
- 46. Факторы трансляции
- 47. Инициация трансляции у прокариот
- 48. Функции малой и большой субьединиц рибосомы в ходе инициации трансляции
- 49. Реакция транспептидации в элонгации трансляции
- 50. Реакция транслокации в элонгации трансляции
- 51. Шесть принципов репликации ДНК:
- 52. ДНК-зависимые ДНК полимеразы прокариот. Домены и ферментативная активность
- 53. Репликативные вилки и топологическая сложность репликации
- 54. Репликаза. Субьединицы и их функции
- 55. Фрагменты Оказаки. Репликация на "отстающей цепи" ДНК.
- 56. Семь особенностей репликации ДНК у эукариот
- 57. Репликация и метилирование ДНК

Критерии оценивания:

Оценка	Критерии оценки
Не зачтено	Нет ответа даже на общие вопросы
Зачтено	Неполный ответ на все вопросы, полный развернутый или частично неполный ответ на все вопросы

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=17405
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских занятий по дисциплине:
 - Структура и функции белков (2 часа)
 - Строение и функции нуклеиновых кислот (2 часа)
 - г) Методические указания по организации самостоятельной работы студентов.

Самостоятельная работа студентов предполагается в форме углубленного изучения теоретических вопросов, представленных в разделе 8, подготовки к семинарским занятиям и тестам.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Молекулярная биология клетки Т. 2 : с задачами Джона Уилсона и Тима Ханта : [в 3 т.] /Брюс Альбертс, Александр Джонсон, Джулиан Льюис [и др.]; пер. с англ. А. Н. Дьяконовой, А. В. Дюбы; под ред. Е. Н. Богачевой, И. Н. Шатского. Москва [и др.]: Регулярная и хаотическая динамика [и др.], 2013. 1736 с.
- Никольский В.И. Генетика: [учебное пособие для студентов вузов]. Москва : Академия, 2010. 248 с.
- Принципы и методы биохимии и молекулярной биологии /[Э. Эйткен, А. Р. Бейдоун, Дж. Файфф и др.]; ред.: К. Уилсон и Дж. Уокер; пер. с англ. Т. П. Мосоловой и Е. Ю. Бозелек-Решетняк; под ред. А. В. Левашова, В. И. Тишкова. Москва: БИНОМ. Лаборатория знаний, 2012. 848 с.
- Физические основы молекулярной биологии : [учебное пособие] /Т. Уэй ; пер. с англ. под ред. Л. В. Яковенко. Долгопрудный: Интеллект , 2010. 363 с.
 - б) дополнительная литература:

Гены /Б. Льюин; Пер. с англ. А. П. Гинцбурга и др. ; Под. ред. Г. П. Георгиева. – М.: Мир , 1987. - 544 с.

Общая генетика: Учебник для студентов университетов, обучающихся по специальности «Биология»/ С.И. Алиханян, А.П. Акифьев, Л.С. Чернин. – М.: Высшая школа, 1985. – 448 с.

Гены и геномы: [Руководство по молекулярной биологии]: в 2-х т. /Пер. с англ. Т. С. Ильиной и Ю. М. Романовой; Под ред. Н. К. Янковского. – М.: Мир, 1998. – 373 с.

- в) ресурсы сети Интернет:
- http://biomolecula.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
- Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. Электрон. дан. М., 2000- . URL: http://elibrary.ru/defaultx.asp?

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Вайшля Ольга Борисовна, кандидат биологических наук, доцент, Биологический институт Томского государственного университета, кафедра генетики и клеточной биологии.