Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Датчики-преобразователи первичной информации

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки/ специализация: **Радиоэлектронные системы передачи информации**

Форма обучения **Очная**

Квалификация **Инженер**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и применять соответствующий физикоматематический аппарат для их формализации, анализа и принятия решения.
- ПК-2 Способен проводить научно-исследовательские и опытно-конструкторские разработки функциональных приборов и устройств радиоэлектроники.
- ПК-3 Способен формулировать математические модели процессов и явлений, происходящих в радиоэлектронных системах и на их основе проводить компьютерное моделирование и оптимизацию.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.1 Имеет представление об историческом и современном состоянии области профессиональной деятельности
- ИОПК 2.2 Выделяет научную сущность и проблемные места в решаемых задачах профессиональной деятельности
- ИОПК 2.3 Владеет приемами и методами решения проблемных задач профессиональной деятельности
- ИПК 2.1 Осуществляет целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем
- ИПК 2.2 Использует современных пакеты прикладных программ для разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств комплексов передачи информации
- ИПК 2.3 Оформляет результаты разработки структурных, функциональных и принципиальные схемы радиоэлектронных устройств по принятым стандартам
- ИПК 3.1 Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах
- ИПК 3.2 Разрабатывает математические модели исследуемых физических процессов, приборов, схем и электронных систем

2. Задачи освоения дисциплины

- Формирование у студентов представлений, знаний, умений и навыков в области датчиков-преобразователей первичной информации.
- Научиться применять на практике приемы автоматизации, контроля и электрических измерений неэлектрических величин с использованием.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, является обязательной для изучения.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Б1.У.О.03 «Физика», Б1.У.В.05 «Введение в специальность», Б1.П.О.03 «Материалы и компоненты радиоэлектроники».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-практические занятия: 16 ч.

-семинар: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Понятие датчиков. Электрические измерения неэлектрических величин.

Введение. Основные понятия и определения. Теория измерительных цепей прямого преобразования. Преобразования неэлектрических величин в электрические. Изучение технических возможностей NI ELVIS. Работа на NI ELVIS, знакомство с основными измерительными возможностями.

Тема 2. Резистивные, емкостные и пьезоэлектрические первичные преобразователи.

Контактные преобразователи. Реостаты и тензорезисторы. Физические основы и область применения пьезоэлектрических преобразователей. Пьезоэлектрические преобразования. Электростатические емкостные преобразователи и область их применения. Работа с контактными (тактильными) датчиками-преобразователями, датчиками вибраций, датчиками касания и усилия.

Тема 3. Датчики магнитных величин. Электромагнитные преобразователи.

Индуктивные, индукционные, трансформаторные и магнитоупругие преобразователи. Датчики для измерения напряженности магнитного поля на основе эффекта Холла и эффекта Гаусса. Работа с датчиками Холла.

Тема 4. Датчики измерители параметров движения и координат

Измерение линейных и угловых размеров. Емкостные и индуктивные датчики линейных перемещений Датчики крутящих моментов, угла поворота и ускорения. Методы измерения параметров движения объектов и положения в пространстве. Бесконтактные датчики координат. Работа с датчиками наклона, гироскопами и акселерометрами.

Тема 5. Детекторы состояния среды и электрохимические преобразователи

Датчики температур. Определение влажности и давления различными радиофизическими методами. Датчики химического состава и концентраций, их избирательность и чувствительность. Работа с датчиками температуры и влажности.

Тема 6. Преобразователи звукового и светового излучения

Приемники светового и звукового излучения. Акустические и оптические преобразователи. Фотодиоды, фототранзисторы и фоторезисторы. Конденсаторные и пьезоэлектрические микрофоны. Ультразвуковые датчики. Системы технического зрения. Работа с инфракрасными, оптическими и ультразвуковыми датчиками.

Тема 7. MEMS сенсоры— микроэлектромеханические системы

MEMS сенсоры, миниатюрные микрофоны, датчики движения. МЕМSтранспортер, DMD-чипы. Системы очувствления роботизированных комплексов. Биомедицинские датчики.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, онлайн тестирования по лекционному материалу, онлайн тестирования по практическому материалу, сдачи отчетов по выполненным практическим занятиям и фиксируется в форме контрольной точки не менее одного раза в семестр.

В рамках самостоятельной работы студенты выполняют индивидуальный или парный проект по теме «Разработка ВП для работы с датчиком ...», а также предоставляют отчет по выполненной работе.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в третьем семестре проводится в виде итогового онлайн тестирования в Среде электронного обучения iDO. Тест содержит 30 вопросов различного типа. Продолжительность тестирования 35 минут. Продолжительность зачета 1 час.

K зачету допускаются только студенты, выполнившие все тесты текущего контроля успеваемости (допускается вместо сдачи тестов текущего контроля выполнение итогового проекта «Разработка ВП для работы с датчиком ...» и защита отчета по проекту) и сдавшие все отчеты по практики.

Оценка самостоятельной работы студента осуществляется по результатам выполнение итогового проекта с датчиками и сдачей отчета по проекту.

Оценка успеваемости студента формируется в соответствии с таблицей 1.

Таблица 1 – Промежуточная аттестация по дисциплине

Оценка	Критерии оценивания
Зачтено	1) Итоговое тестирование пройдено на 65% и более баллов.
	2) Сданы все отчеты по практике.
Не зачтено	Все остальные варианты

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://lms.tsu.ru/course/view.php?id=3586
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Методические указания по проведению практических работ.
- г) Методические указания по организации самостоятельной работы студентов (выбор и выполнение итогового проекта).

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Агеев О. А. Информационно-измерительная техника и электроника. Преобразователи неэлектрических величин: учебное пособие для среднего профессионального образования / О. А. Агеев [и др.]; под общей редакцией О. А. Агеева, В. В. Петрова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 158 с. URL: https://urait.ru/bcode/541292
- 2. Зудин В. Л. Датчики: измерение перемещений, деформаций и усилий: учебное пособие для вузов / В. Л. Зудин, Ю. П. Жуков, А. Г. Маланов. 2-е изд. Москва: Издательство Юрайт, 2024. 199 с.— URL: https://urait.ru/bcode/542971
- 3. Березин С. Я. Биомедицинские датчики : учебное пособие для вузов / С. Я. Березин, В. А. Устюжанин. Москва : Издательство Юрайт, 2024. 270 с. URL: https://urait.ru/bcode/543479

- 4. Родионов, Ю. А. Основы микросенсорики: учебное пособие / Родионов Ю. А. М.: Инфра-Инж., 2019. 288 с. https://www.studentlibrary.ru/book/ISBN9785972903368.html
- 5. Рогов В. А. Средства автоматизации и управления: учебник для вузов / В. А. Рогов, А. Д. Чудаков. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 352 с. URL: https://urait.ru/bcode/561693
- 6. Рачков М. Ю. Измерительные устройства автомобильных систем: учебное пособие для вузов / М. Ю. Рачков. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2024.-135 с. URL: https://urait.ru/bcode/538443

б) дополнительная литература:

- 1. Платт Ч. Энциклопедия электронных компонентов. Датчики местоположения, присутствия, ориентации, вибрации, жидкости, газа, света, тепла, звука, электричества. Том 3 / Ч. Платт, Ф. Янссон. Санкт-Петербург: Издательство БХВ-Петербург. 2017. 288 с.
- 2. Шарапов В. М. Датчики: справочное пособие / В. М. Шарапов, Е. С. Полищук, Н. Д. Кошевой, Г. Г. Ишанин. М.: Техносфера, 2012. 624 с. URL: https://e.lanbook.com/book/73560
- 3. Клаассен, К. Основы измерений. Датчики и электронные приборы: учебное пособие / К. Клаассен. 4-е изд. Долгопрудный: Издательский Дом «Интеллект», 2012. 352 с. URL: https://znanium.com/catalog/product/413191

в) ресурсы сети Интернет:

- Электронно-библиотечная система Юрайт («Электронного издательства ЮРАЙТ») [Электронный ресурс] М., URL: http://vital.lib.tsu.ru/vital/access/manager/Index, доступ свободный с компьютеров университетской сети ТГУ.
- Издательство «Лань» [Электронный ресурс] : электрон.-библиотечная система. Электрон. дан. СПб., 2010- . URL: http://e.lanbook.com/, доступ свободный с компьютеров университетской сети ТГУ.
- Электронно-библиотечная система Znanium.com [Электронный ресурс] / Научно-издательский центр Инфра-М. Электрон. дан. М., 2012- . URL: http://znanium.com/, доступ свободный с компьютеров университетской сети ТГУ.
- Электронно-библиотечная система «Консультант студента». Политематическая коллекция учебников, учебных пособий и монографий. URL: http://www.studentlibrary.ru, доступ свободный с компьютеров университетской сети ТГУ.
- Электронная библиотека (репозиторий) ТГУ [Электронный ресурс]. Электрон. дан. Томск, 2024- . URL: http://vital.lib.tsu.ru/vital/access/manager/Index, доступ свободный с компьютеров университетской сети ТГУ.
- Общероссийская Сеть КонсультантПлюс Справочная правовая система. http://www.consultant.ru

– ...

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - Электронные учебные курсы на базе виртуальной обучающей среды MOODLE;
 - системные пакеты ПО MultiSim и LabVIEW.
 - б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Освоение дисциплины обеспечено наличием демонстрационной аппаратуры, компьютерных классов с 30-ю рабочими местами с наличием модульных образовательной лабораторно-технической платформ NI ELVIS –для выполнения практических занятий и индивидуальной работы, с выходом в Интернет. В качестве материально-технической базы и информационного обеспечения для освоения курса «Датчики-преобразователи первичной информации» (проведения практических занятий и выполнения итогового проекта) служат оборудование и ресурсы лаборатории Радиоэлектроники РФФ ТГУ и лаборатории Робототехники РФФ ТГУ.

15. Информация о разработчиках

Кулешов Григорий Евгеньевич, кандидат физ.-мат. наук, доцент, доцент каф. радиоэлектроники РФФ ТГУ.