Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Методы клеточной биологии

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А. Л. Борисенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.

ОПК-8 Способен использовать методы сбора, обработки, систематизации и представления полевой и лабораторной информации, применять навыки работы с современным оборудованием, анализировать полученные результаты.

ПК-1 Способен участвовать в исследовании биологических систем и их компонентов, планировать этапы научного исследования, проводить исследования по разработанным программам и методикам, оптимизировать методики под конкретные задачи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-2.2 Использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания

ИОПК-8.1 Формулирует принципы сбора, обработки, систематизации и представления полевой и лабораторной информации

ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными залачами

2. Задачи освоения дисциплины

- Знать основные цитологические методы, используемые для наблюдения, описания, идентификации, культивирования и анализа строения клеток для оценки и коррекции состояния клеток и мониторинга среды их обитания.
- Знать методы исследования строения и функционирования клеток с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами.
 - Уметь искать и анализировать информацию о методах исследования клеток.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль «Генетика, клеточная и синтетическая биология».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Пятый семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Анатомия и морфология высших растений», «Зоология позвоночных», «Биохимия», «Цитология и гистология».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых:

- лекции: 16 ч.
- семинар: 16 ч.

в том числе практическая подготовка: 0 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Микроскопия в проходящем свете.

Метод светлого поля. Метод фазового контраста. Другие методы световой микроскопии. Морфометрические методы в цитологических исследованиях. Измерение объектов с помощью микроскопа.

Тема 2. Микроскопия в отраженном свете.

Флуоресцентная микроскопия. Конфокальная микроскопия. Флуоресцентная наноскопия.

Тема 3. Качественный анализ клеток и тканей. Цито- и гистологические методы исследования фиксированного материала.

Фиксация, заключение в среды. Получение срезов. Микротомы. Красители и техника окрашивания. Интерпретация окрашивания клеток и тканей (базофилия, метахромазия, оксифилия, нейтрофилия). Интерпретация формы объекта.

Тема 4. Исследование химического состава клеток и тканей (цито- и гистохимические методы.

Гистохимия белков, углеводов, нуклеопротеидов, липидов. Иммунохимические методы. Иммунофенотипирование клеток.

Тема 5. Исследование внутриклеточных процессов.

Методы визуализации и мониторинга процессов в живых клетках. Фотоотбеливание. Методы изучения внутриклеточного транспорта.

Тема 6. Количественный анализ цитологических и гистологических препаратов.

Радиоавтография. Методы определения плоидности клеток (статическая и проточная цитометрия).

Тема 7. Методы изучения клеток *in vitro*.

Методы культивирования животных клеток. Методы культивирования растительных клеток.

Тема 8. Электронная микроскопия. Методы изучения ультраструктуры клетки.

Просвечивающая (трансмиссионная) электронная микроскопия. Сканирующая (растровая) электронная микроскопия. Сканирующая зондовая микроскопия. Третье измерение в электронной микроскопии биологических структур.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, оценки докладов по предложенным темам, оценки за тест, оценки систематического обзора по одному из методов клеточной биологии и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в пятом семестре проводится на основе суммы проходных баллов за каждый из видов заданий, которые студент получил за период прохождения курса. Общая балльная оценка складывается из баллов, присуждаемых за посещение лекций и семинаров (0-16 баллов, проходной балл - 14), баллов за выполнение доклада на семинаре (0-3 балла, проходной балл - 2), баллов за тест (0-10 баллов, проходной балл - 6) и оценки за систематический обзор (0-3 балла, проходной балл - 2). Для получения зачёта обучающемуся необходимо набрать не менее 24 баллов.

Формирование ИОПК-2.2 отражается в подготовленных студентами докладах к семинарским занятиям по темам «Флуоресцентные красители, используемые для визуализации клеточных органелл в живых клетках», «Методы наблюдения за клетками *in vitro*», «Современные методы визуализации клеток *in vivo*» и подготовленных студентами систематических обзорах по темам, посвященным анализу живых клеток.

Формирование ИОПК-8.1 отражается в выполнении студентами теста «Пробоподготовка биологического материала для цито- и гистологических исследований» и подготовленных студентами систематических обзорах по темам, посвященным методам изучения клеток и тканей.

Формирование ИПК-1.1 отражается в подготовленных студентами докладах по всем темам семинарских занятий и темам систематических обзоров, посвященным современной микроскопической технике.

Если набрано меньше 24 баллов, то студент сдает устный зачёт по билетам. Каждый билет содержит 2 теоретических вопроса, ответ на которые в совокупности отражает освоение студентом индикаторов ИОПК-2.2, ИОПК-8.1 и ИПК-1.1. Продолжительность зачета 1 час.

Вопросы к зачету по дисциплине «Методы клеточной биологии»

ИОПК-2.2. Использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания;

- 1. Методы наблюдения за клетками *in vitro*.
- 2. Использование первичных клеточных культур в исследованиях.
- 3. Методы культивирования животных клеток. Основные этапы культивирования.
- 4. Виды контаминации при культивировании клеток. Условия асептики при выполнении работ с культурами клеток.
- 5. Методы культивирования растительных клеток.
- 6. Методы визуализации и мониторинга процессов в живых клетках.
- 7. Фотоотбеливание.
- 8. Флуоресцентные красители, используемые для визуализации клеточных органелл в живых клетках.
- 9. Методы исследования наночастиц внутри клетки.
- 10. Современные методы визуализации клеток *in vivo*.

ИОПК-8.1. Формулирует принципы сбора, обработки, систематизации и представления полевой и лабораторной информации;

- 11. Морфометрические методы в цитологических исследованиях.
- 12. Подготовка образцов для цитологического/гистологического исследования. Фиксация, заключение в среды и получение срезов.
- 13. Красители и техника окрашивания. Интерпретация окрашивания клеток и тканей.
- 14. Цито- и гистохимические методы. Гистохимия белков, углеводов, нуклеопротеидов.
- 15. Иммуноцитохимия.
- 16. Иммунофенотипирование клеток. Этапы метода.

- 17. Радиоавтография. Первые опыты по использованию радиоактивных изотопов. Физические основы метода.
- 18. Методы определения плоидности клеток (статическая и проточная цитометрия).
- 19. Метод FISH, ДНК-пробы.
- 20. Метод ДНК-комет. Этапы метода.
- ИПК-1.1. Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами;
- 21. Классификации микроскопов по объекту исследования, конструкции микроскопа, способам освещения объекта и принципам построения изображения.
- 22. Микроскопия в проходящем свете. Методы, разрешающая способность, оптическая схема микроскопа.
- 23. Микроскопия в отраженном свете. Разрешающая способность и оптическая схема микроскопа.
- 24. Флуоресцентная микроскопия. Физические основы метода.
- 25. Конфокальная микроскопия. Физические основы метода.
- 26. Микроскопия сверхвысокого разрешения (наноскопия). Общая характеристика методов.
- 27. Просвечивающая (трансмиссионная) электронная микроскопия. Физические основы метода, пробоподготовка, разрешающая способность.
- 28. Сканирующая (растровая) электронная микроскопия. Физические основы метода, пробоподготовка, разрешающая способность.
- 29. Сканирующая зондовая микроскопия. Физические основы метода, пробоподготовка, разрешающая способность.
- 30. Третье измерение в электронной микроскопии биологических структур.

Критерии оценивания:

Оценка	Критерии оценки
Не зачтено	Нет ответа на 1 или 2 вопроса билета.
Зачтено	Неполный или полный развернутый ответ на два вопроса билета.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «LMS» https://lms.tsu.ru/course/view.php?id=37156
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских занятий по дисциплине:
- Флуоресцентные красители, используемые для визуализации клеточных органелл в живых клетках (2 часа).
 - Иммуноцитохимические маркеры органелл (2 часа).
 - Особенности культивирования и использования клеточных линий животных.
 - Современные методы визуализации клеток *in vivo* (2 часа).

- Методы изучения ДНК и хромосом: примеры использования, используемая приборная база, практическое применение (2 часа).
- Методы исследования наночастиц внутри клетки: примеры использования, используемая приборная база, практическое применение (2 часа).
 - Современные подходы в изучении ультраструктуры клетки (2 часа).
 - Доклады по темам систематических обзоров (2 часа).

Семинарские занятия проводятся по единому плану:

- 1. Доклады обучающихся по темам, соответствующим содержанию дисциплины (п. 8.) и теме семинарского занятия (п. 11 в).
 - 2. Обсуждение представленной информации.
 - 3. Ознакомление с информационными источниками по теме семинара.
 - г) Методические указания по написанию систематического обзора.

Методические указания по написанию систематического обзора приведены в электронном учебном курсе по дисциплине в электронном университете «iDO» – https://lms.tsu.ru/course/view.php?id=37156

д) Методические указания по организации самостоятельной работы студентов.

Самостоятельная работа студентов предполагается в форме углубленного изучения теоретических вопросов, представленных в разделе 8, подготовки к семинарским занятиям, тесту, написания систематического обзора и подготовки к зачету.

В результате самостоятельной работы обучающийся должен:

- развить умение самостоятельно работать с учебным материалом;
- приобрести навыки поиска и реферирования доступной научной информации о методах клеточной биологии и примерах их применения на практике.

Во время самостоятельной работы для подготовки к семинарским занятиям обучающийся может использовать рекомендованные литературные источники и интернетресурсы, а также иные источники информации (статьи в периодических изданиях и др.), позволяющие получать современную информацию о методах клеточной биологии.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Фрешни Р. Я. Культура животных клеток : практическое руководство. 5-е изд. / Москва : Лаборатория знаний, 2022. 789 с. ISBN 978-5-00101-974-9. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/115583.html (дата обращения: 11.10.2024).
- Руководство по изучению цитологических и гистологических характеристик культур клеток и тканей растений: учебное пособие / М. В. Филонова, С. В. Пулькина, А. А. Чурин [и др.]. Томск: Издательский Дом Томского государственного университета, 2020. 74 с. ISBN 978-5-94621-889-4. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/116877.html (дата обращения: 11.10.2024).
- Методы культивирования клеток / под ред. Г. П. Пинаева, М. С. Богдановой / СПб. : Изд-во Политехн. Ун-та, 2008.-278 с.
 - Епифанова О.И., Терских В.В., Захаров А.Ф. Радиоавтография / 1977. 248 с.
- Основы сканирующей зондовой микроскопии. https://www.infran.ru/Confocal_microscopy/Documents/Mironov_Book.pdf (дата обращения: 11.10.2024).
- Методы обработки и интерпретация изображений сканирующей зондовой микроскопии. http://physelec.phys.msu.ru/files/practice/Metody.pdf (дата обращения: 11.10.2024).

- Duque A., Pasko R. Different Effects of Bromodeoxyuridine and [³H]Thymidine Incorporation into DNA on Cell Proliferation, Position, and Fate // Journal of Neuroscience/2011. V. 31 (42), P. 15205-15217. https://www.jneurosci.org/content/31/42/15205 (дата обращения: 11.10.2024).
- Liao W., McNutt M.A., Zhu W.G. The comet assay: a sensitive method for detecting DNA damage in individual cells // Methods. 2009 V. 48(1), P. 46-53.
- Collins, A., Møller, P., Gajski, G. et al. Measuring DNA modifications with the comet assay: a compendium of protocols // Nat Protoc. 2023. V 18, P. 929–989. https://doi.org/10.1038/s41596-022-00754-y (дата обращения: 11.10.2024).
- Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) // Nat Methods. 2006 V. 3(10), P. 793-795.
- Di Gialleonardo V., Wilson D.M., Keshari K.R. The Potential of Metabolic Imaging // Semin Nucl Med. 2016. V. 46(1), P. 28-39.

б) дополнительная литература:

- Гайдай Е.А., Дорофеева А.А., Крышень К.Л., Гайдай Д.С. Методические аспекты проведения ДНК-комет-теста в условиях in vivo в доклинических исследованиях // Лабораторные животные для клинических исследований. 2020. № 3. С. 16-24. https://labanimalsjournal.ru/ru/2618723x-2020-03-03 (дата обращения: 11.10.2024).
- Дыкман Л.А., Хлебцов Н.Г. Золотые наночастицы в биологии и медицине: достижения последних лет и перспективы. Асta naturae. 2011. Т 3 № 2 (9).
- Линге И. Тимидин круг замкнулся // 2018. https://biomolecula.ru/articles/timidin-krug-zamknulsia
- Rakic P. Neurogenesis in adult primate neocortex: an evaluation of the evidence // Nat Rev Neurosci. 2002. V. 3(1), P. 65-71.
- Taylor J.H. Distribution of tritium-labeled DNA among chromosomes during meiosis: I. Spermatogenesis in the Grasshopper // J Cell Biol. 1965. V. 25(2), P. 57-68.
- Сидоров Г.В., Мясоедов Н.Ф. Синтез меченных тритием биологически важных диазинов // Успехи химии. 1999. Т. 68. № 3, С. 254-266.
- Ostling O., Johanson K.J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells // Biochem Biophys Res Commun. 1984. V. 123(1), P. 291-298.
- Чернигина И.А., Щербатюк Т.Г. Новая версия метода ДНК-комет // Современные технологии в медицине. 2016. Т. 8, № 1. http://www.stm-journal.ru/ru/numbers/2016/1/1215/html
- Коломиец О.О., Павлова И.В., Глушен С.В. Цитометрический анализ плоидности и пролиферации клеток у растущих in vitro линий овощных культур // Генетика. 2015. Т. 10. С. 116.
- Бродовская Е.П. и др., Разработка метода визуализации распределения наночастиц в живом организме с помощью флюоресцентного маркера // Современные проблемы науки и образования. 2019. № 2. https://science-education.ru/ru/article/view?id=28772
- Kulikova, T., Khodyuchenko, T., Petrov, Y. *et al.* Low-voltage scanning electron microscopy study of lampbrush chromosomes and nuclear bodies in avian and amphibian oocytes. *Sci Rep* **6**, 36878 (2016).
- Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology.
 Integr Biol (Camb). 2014
 Jan;6(1):9-26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865110/
 - Статьи по темам курса в периодических изданиях:
- Methods in Cell Biology. https://www.sciencedirect.com/bookseries/methods-in-cell-biology

Cell Reports Methods. https://www.cell.com/cell-reports-methods/home

- в) ресурсы сети Интернет (дата актуализации: 21.10.2024):
- Выбор наилучшего источника света для экспериментов по флуоресценции. https://www.biotechnologies.ru/catalog/_Vybor_istochnika_sveta_dlya_flyuorestsentsii.html
- Методы микроскопии: конфокальная, широкопольная микроскопия, микроскопия в проходящем свете и деконволюция. https://azimp-micro.ru/info/articles/mikroskopiya/metody-mikroskopii-andor/
- Основы сканирующей зондовой микроскопии. https://www.infran.ru/Confocal_microscopy/Documents/Mironov_Book.pdf
 - Клетка. https://postnauka.ru/themes/kletka
 - ДНК-кометы. https://elementy.ru/kartinka_dnya/862/DNK_komety
- Методы проточной цитометрии https://researchpark.spbu.ru/methods-biomed-rus/1912-bio-metod-06-rus
- Биомолекула. 12 методов в картинках: проточная цитофлуориметрия https://biomolecula.ru/articles/12-metodov-v-kartinkakh-protochnaia-tsitofluorimetriia
- Биомолекула. Невидимая граница: где сталкиваются «нано» и «био» https://biomolecula.ru/articles/nevidimaia-granitsa-gde-stalkivaiutsia-nano-i-bio
- Флуоресцентные красители https://biocommerce.ru/spravochnik-po-tehnologiyam/fluorestsentnye-krasiteli/
- Amin M.A., Varma D. Combining Mitotic Cell Synchronization and High Resolution
 Confocal Microscopy to Study the Role of Multifunctional Cell Cycle Proteins During Mitosis /
 J Vis Exp. 2017. V. 130:56513. https://www.jove.com/v/56513/combining-mitotic-cell-synchronization-high-resolution-confocal
- Griem-Krey N., Bue Klein A., Herth M., Wellendorph P. Autoradiography as a Simple and Powerful Method for Visualization and Characterization of Pharmacological Targets // JoVE Journal Neuroscience. 2019. DOI: 10.3791/58879-v. https://www.jove.com/v/58879/autoradiography-as-simple-powerful-method-for-visualization
- Protocols for Immunocytochemistry (ICC) https://www.abcam.com/primary-antibodies/new-resources-guide-for-imaging-reagents
- Otago Micro and Nanoscale Imaging. [Электронный ресурс] / URL: https://www.otago.ac.nz/omni/index.html (дата обращения11.10.2024).
 - PubMed https://pubmed.ncbi.nlm.nih.gov/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

- Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. Электрон. дан. М., 2000- . URL: http://elibrary.ru/defaultx.asp?
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Ананьина Татьяна Викторовна, кандидат биологических наук, доцент кафедры генетики и клеточной биологии БИ ТГУ.