Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Динамическое разрушение твердых тел

по направлению подготовки

15.04.03 Прикладная механика

Направленность (профиль) подготовки: Компьютерный инжиниринг конструкций, биомеханических систем и материалов

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП В.А. Скрипняк Е.С. Марченко

Председатель УМК В.А. Скрипняк

Томск - 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать и создавать критерии оценки результатов исследований;.
- ПК-3 Готов овладевать новыми современными методами и средствами проведения экспериментальных исследований по динамике и прочности, устойчивости, надежности, трению и износу конструкций, обрабатывать, анализировать и обобщать результаты экспериментов.
- ПК-4 Способен применять физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 1.1 Знать современные проблемы и задачи прикладной механики, приоритетные направления научных и прикладных работ в области прикладной механики, подходы и методы формулировки критериев оценки решения задач в области прикладной механики
- ИОПК 1.2 Уметь формулировать цели и задачи исследования при решении приоритетных задач прикладной механики, выбирать и создавать критерии оценки решений задач прикладной механики
- ИОПК 1.3 Владеть навыками формулировки целей и задач исследования при решении приоритетных задач прикладной механики, выбирать и создавать критерии оценки решений задач прикладной механики
- ИПК 3.1 Знать современные методы и средства проведения экспериментальных исследований по динамике, прочности, устойчивости, надежности, трению и износу конструкций
- ИПК 3.2 Уметь овладевать новыми современными методами и средствами проведения экспериментальных исследований по динамике и прочности, устойчивости, надежности, трению и износу конструкций
- ИПК 3.3 Уметь обрабатывать, анализировать и обобщать результаты экспериментов
- ИПК 3.4 Владеть навыками использования современных методов и средств проведения экспериментальных исследований, навыками обработки, анализа и обобщения результатов экспериментов
- ИПК 4.1 Знать физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования, применяемые в процессе профессиональной деятельности
- ИПК 4.2 Уметь применять физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности
- ИПК 4.3 Владеть навыками применения физико-математического аппарата, теоретических, расчетных и экспериментальных методов исследования, методов математического и компьютерного моделирования в процессе профессиональной деятельности

2. Задачи освоения дисциплины

– Освоить принципы и методы планирования ударно-волновых экспериментов по определению прочностных характеристик при отколе, физические основы прочности материалов и конструкций, физические основы процессов, определяющих влияние

конструктивных и технологических факторов, а также внешних воздействий на прочность и долговечность элементов защитных конструкций и систем.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль №1 «Вычислительная механика и компьютерный инжиниринг».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Динамические задачи прикладной механики.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

-лабораторные: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основные понятия экспериментальной физики ударных волн.

Основное содержание курса и место физики динамического разрушения в механике сплошной среды и связь с другими дисциплинами. Понятие ударной волны и волны разрежения. Правила распространения волн сжатия и разрежения. Основные характеристики ударной волны. Уравнения одномерного движения в дифференциальной форме. Инварианты Римана. Уравнения Ренкина-Гюгонио. Понятие уравнения состояния. Динамическая жесткость материала. Структура ударных волн в упругопластическом материале и в среде с фазовыми превращениями. Р-и и t-х анализ взаимодействий ударных волн и волн разрежения.

Тема 2. Методы генерации ударных волн и регистрации параметров ударно-сжатых материалов.

Основные способы генерации ударных волн в твердых телах с помощью баллистических установок, энергии ВВ и импульсных пучков. Дискретные методы измерения волновых и массовых скоростей. Методы регистрации давления ударного сжатия. Непрерывные методы регистрации эволюции ударных волн.

Тема 3. Основные понятия откольного разрушения твердых тел.

Специфика экспериментов с плоскими ударными волнами. Понятие откольного разрушения. Выход треугольной волны сжатия на свободную поверхность. Условия возникновения откольного разрушения в твердом теле. Акустическое приближение откола. Р-и и t-х анализ волновых взаимодействий ударных волн и волн разрежения при

отколе. Эволюция профиля скорости свободной поверхности при откольном разрушении. P-и диаграмма откольного разрушения упруго-пластического тела. Приближение к идеальной прочности твердого тела.

Тема 4. Методы измерений откольной прочности.

Металлографическое изучение зоны откольного разрушения в сохраненных образцах. Измерение толщины откольной пластины и моделирование процесса разрушения. Суть метода и источники погрешности. Метод искусственного откола, понятие критической скорости. Оценка накопления повреждений из металлографического анализа зоны откола. Инструментальные методы измерения разрушающих напряжений. Метод регистрации волновых профилей давления на границе с мягким материалом. Регистрация профилей скорости свободной поверхности.

Тема 5. Полный анализ волнового профиля при отколе.

Эволюция волнового профиля при откольном разрушении твердых тел. Определение величины растягивающих напряжений в плоскости откола в акустическом приближении. Искажение волнового профиля вследствие упругопластического характера поведения материала. Поправка на искажение волнового профиля. Определение толщины откольной пластины. Источники погрешности определения откольной прочности из анализа волновых профилей.

Тема 6. Определяющие факторы откольного разрушения металлов.

Влияние условий нагружения — длительности и амплитуды ударного сжатия на сопротивление металлов откольному разрушению. Температурные эффекты при откольном разрушении металлов. Влияние структурных факторов на разрушающие откольные напряжения. Откольная прочность поликристаллических, субмикрокристаллических и монокристаллических металлов и сплавов. Влияние динамической деформации на упрочнение металлов.

Тема 7. Хрупкое разрушении твердых тел в ударных волнах

Особенности хрупкого разрушения твердых тел в ударных волнах. Волновые профили при хрупком разрушении. Критерий Гриффитса. Волна разрушения в ударносжатых хрупких материалах. Критерий формирования и особенности распространения волны разрушения в стекле. Откольная прочность хрупких материалов — стекол, монокристаллов и керамических материалов.

Тема 8. Критерии и модели откольного разрушения.

Эмпирические критерии откольного разрушения. Энергетический критерий. Работа откольного разрушения. Краевые эффекты при отколе. Кинетические модели откольного разрушения. Модель зарождение и роста микроповреждений в зоне откола. Кинетическая модель откольного разрушения на основе временной зависимости.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность зачета с оценкой 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» http://lms.tsu.ru/course/view.php?id=22429
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Методические указания по проведению лабораторных работ.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Высокоскоростной удар. Моделирование и эксперимент / под ред. А.В. Герасимова. Томск: Изд-во НТЛ, 2016. 568 с.
- Скрипняк В.А., Скрипняк Е.Г., Разоренов С.В. Ударные волны в конденсированных средах. Томск. Изд-во НТЛ, 2007. 168 с.
- Физика взрыва / Под ред. Л.П. Орленко. Изд. 3-е, переработанное. В 2 т. М.: ФИЗМАТЛИТ, 2002. 1488 с.
- Канель Г.И., Разоренов С.В., Уткин А.В., Фортов В.Е. Ударно-волновые явления в конденсированных средах. -М.: Янус-Ю. 1996. − 409 с.
- Динамика удара / Под ред. Зукас Дж.А., Николас Т., Свифт Х.Ф. -М.: Мир, 1985.
 -286 с.
 - б) дополнительная литература:
- Даниленко В.В. Взрыв: физика, техника, технология. М.: Энергоатомиздат, 2010. 784 с.
- Селиванов В.В., Новиков С.А., Кобылкин И.Ф. Взрывные технологии. М.: МГТУ им. Баумана, 2008. 648 с.
- Kanel G.I., Razorenov S.V., Fortov V.E. Shock-Wave Phenomena and Properties of Condensed Matter. 2004. Springer. 321 p.
- Antoun T., Seaman L., Curran D.R., Kanel G.I., Razorenov S.V., Utkin A.V. Spall Fracture. Springer. 2003. 404 p.
- Жерноклетов М.В. Методы исследования свойств материалов при интенсивных динамических нагрузках. Саров: 2003. 403 с.
- Канель Г.И., Разоренов С.В., Фортов В.Е. Волны разрушения в ударно-сжатом стекле. Успехи механики, 2005, Т.3, №3, С.9-57.
- Канель Г.И., Фортов В.Е., Разоренов С.В. Ударные волны в физике конденсированного состояния. УФН, 2007, т.177, №8, С.809-830.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы
- электронная библиотека «EqWorld Мир математических уравнений» в Институте проблем механики PAH http://eqworld.ipmnet.ru/ru/library/mechanics.htm
 - http://strelka.ftf2.tsu.ru/school/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standard 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»). Лаборатория механики деформируемого тела.

15. Информация о разработчиках

Авторы:

Разоренов Сергей Владимирович, доктор физико-математических наук, профессор, кафедра механики деформируемого твёрдого тела, профессор.

Зелепугин Сергей Алексеевич, доктор физико-математических наук, ст.н.с., кафедра механики деформируемого твёрдого тела, профессор.