Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Алгоритмы и структуры данных

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-7 Способен создавать программы на языках высокого и низкого уровня, применять методы и инструментальные средства программирования для решения профессиональных задач, осуществлять обоснованный выбор инструментария программирования и способов организации программи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-7.1 Осуществляет построение алгоритма, проведение его анализа и реализации в современных программных комплексах

ИОПК-7.2 Понимает общие принципы построения и использования языков программирования высокого уровня и низкого уровня

ИОПК-7.3 Демонстрирует навыки создания программ с применением методов и инструментальных средств программирования для решения различных профессиональных, исследовательских и прикладных задач

ИОПК-7.4 Осуществляет обоснованный выбор инструментария программирования и способов организации программ

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- тесты;
- домашние задания;
- лабораторные работы;
- контрольная работа.

Типовые задания третьего семестра.

Контрольная работа (ИОПК-7.1, ИОПК-7.2, ИОПК-7.3)

Необходимо выполнить предложенные задания.

Варианты заданий.

Задание №1

Продемонстрируйте работу КМП поиска на заданном примере.

P[10] = "aaabaaaab";

S[30] = "aaabacbaaaaababaaaababbaaaaaaaab";

j	0	1	2	3	4	5	6	7	8
P_{j}	a	a	a	b	a	a	a	a	b
NewJ[j]									

Поиск

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Si	a	a	a	b	a	c	b	a	a	a	a	a	b	a	a	a	a	b	a	b	b	a	a	a	a	a	a	a	a	b
Pj	a	a	a	b	a	a	a	a	b																					

Задание №2

Задача Коммивояжёра. Показать на примере поиск пути минимальной стоимости с помощью эвристики №2, для заданной матрицы стоимости. Начальный город 3.

	0	5	6	6	4
	8	0	3	8	5
C =	3	5	0	2	4
	6	6	2	0	4
	5	2	7	1	0

Залание №3

Дано: Массив целых чисел размерности N=12. Отсортировать массив методом Шелла с шагом h0 = n/2, hi = hi-1/2, ..., ht=1. Продемонстрировать работу алгоритма на примере.

indexes	0	1	2	3	4	5	6	7	8	9	10	11				
	4	10	6	2	7	2	-1	4	11	12	0	3				

Домашние задания представляют собой практические вопросы по темам лекций, в частности рассмотрение работы изученных алгоритмов на конкретных примерах (ИОПК-7.1, ИОПК-7.2, ИОПК-7.3).

Варианты лабораторных заданий (ИОПК-7.1, ИОПК-7.2, ИОПК-7.3)

- 1. Задача коммивояжера (полный перебор).
- 2. Задача коммивояжера (эвристика по выбору).2.
- 3.БМ-поиск.
- 4. Сортировка Шелла;
- 5. Пирамидальная сортировка;
- 6. Сортировка Хоара;
- 7. Побитовая сортировка.
- 8. Топологическая сортировка (на матрицах);
- 9. Топологическая сортировка (на списках)

Типовые задания четвертого семестра (ИОПК-7.1, ИОПК-7.2, ИОПК-7.3)

Тест (с ответами) по теме: файловые сортировки.

- 1. Какие отрезки рассматриваются в сортировках прямым слиянием?
- 1) Длины р. р изменяется в процессе сортировки.
- 2) Упорядоченные по возрастанию.

Ответ: 2 Балл: 0,83.

2. Получите результат этапа слияния в сортировке прямого 3-х файлового слияния при p = 2 и следующих значениях в файлах fb и fc.

fb = 17 80 12 37 1 48 fc = 3 59 26 89 73

Ответ: 3 17 59 80 12 26 37 89 1 48 73

Балл: 1,67.

3. Выполните многофазную сортировку для следующих чисел при n=5 (4 для разбиения, 5-ый для слияния)

19 7 60 45 68 39 78 78 71 14 91 25 16 83 26 32 27 96 15 54

Какие значения в массиве d после этапа разбиения до этапа слияния (5 чисел)?

Ответ 1:

0 0 1 1 0 100%

Ответ 2:

1 1 0 0 0 70%

Балл: 1,67.

4. Сколько уровней разбиения в решении задачи многофазной сортировки из вопроса 3?

3 4 5

Правильной выбор: 3

Балл: 0,83.

5. Укажите значения в массиве 'а' на 3-м уровне разбиения (5 чисел).

Ответ: 4 4 3 2 0

Балл: 1,67.

6. Какие числа добавляются в файл f[1] на 2-м уровне этапа разбиения?

Ответ: 14 91 -1 Балл: 1,67.

7. Какие числа в файле f[4] в результате 2-го уровня этапа слияния?

Ответ:

7 16 19 25 26 32 60 83 -1

Балл: 1,67.

Порядок оценивания.

За тест начисляются баллы по шкале 10 баллов. Оценка по шкале 5 баллов формируется по следующему критерию:

Баллы	Оценка
≥ 8,5	5
≥ 6,5	4
≥ 4,5	3

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Типовые задания для третьего семестра (ИОПК-7.1, ИОПК-7.2, ИОПК-7.3)

Зачет с оценкой в третьем семестре проводится в письменной форме по билетам. Билет содержит два теоретических вопроса по алгоритмам, структурам данных и практическую задачу. Студент письменно готовит ответ на вопросы в билете, решение практической задачи, после чего, в устной форме объясняет/защищает преподавателю подготовленный материал.

Примеры билетов (ИОПК-7.1, ИОПК-7.2, ИОПК-7.3)

Билет №1

- 1. Алгоритм устойчивой сортировки с подсчетом. Продемонстрировать работу алгоритма на примере.
 - 10, 8, 7, 7, 4, 4, 1, 3, 9, 7.
- 2. Указать основные классы сложности и записать их в виде цепочки оценок роста сложности. Оценка сложности Пирамидальная сортировка.
- 3. Дано: Ориентированных граф G, который описывается с помощью структур Lider, Trailer. Написать функцию, которая для заданных вершин Vx, Vy, Vz, выясняет, задают ли дуги (Vx,Vy),(Vy,Vz),(Vz,Vx) цикл в графе G.

Билет №2

1. Алгоритм поиска медианы. Продемонстрировать работу алгоритма на примере 10, 8, 7, 7, 4, 4, 1, 3, 9, 7.

- 2. Понятие оценки θ . Оценка сортировки Хоара.
- 3. Дано: Ориентированных граф G, который описывается с помощью структур Lider, Trailer. Написать функцию, которая выясняет, представляют ли заданные вершины Vx, Vy, Vz, полный ориентированный подграф.

Оценка по курсу формируется относительно оценок по лабораторным работам и оценкам за ответы по по билету. Оценка по лабораторным определяет «потолок» оценки по курсу, которая может быть подтверждена либо понижена, полученной оценкой по билету.

Оценка по	Оценка по лекционному материалу	Оценка по курсу
лабораторным		«Алгоритмы и
		структуры данных»
«Отлично»	«Отлично»	«Отлично»
	«Хорошо»	«Хорошо»
	«Удовлетворительно»	«Удовлетворительно»
	Билет на оценку «отлично» содержит вопросы по	
	теории и <i>сложную</i> практическую задачу.	
«Хорошо»	«Хорошо»	«Хорошо»
	«Удовлетворительно»	«Удовлетворительно»
	Билет на оценку хорошо содержит вопросы по	
	теории и <i>среднюю по сложности</i> практическую	
	задачу.	
«Удовлетворительно»	«Удовлетворительно»	«Удовлетворительно»
	Билет на оценку «удовлетворительно» содержит	
	вопросы по теории и простую по сложности	
	практическую задачу.	

Типовые задания для четвертого семестра (ИОПК-7.1, ИОПК-7.2, ИОПК-7.3)

Экзамен в четвертом семестре проводится в одной из двух форм:

1) в виде двух коллоквиумов в письменной форме или в эквивалентной электронной форме по билетам. Продолжительность каждого коллоквиума 1,5 часа.

Коллоквиум 1 Вариант 1

76 50 77 32 41 30 18 95 28 35 17 85 21 17 24 57 7 69 51 47

- 1. Прямое слияние на 3 файлах.
- 2. Многофазная сортировка: разбиение и слияние. n = 6 (5 для разбиения, 6-ой для слияния).

Для каждой сортировки проиллюстрировать работу алгоритма на заданных числах. Для многофазной сортировки: изложить алгоритм по шагам; привести формулы вычисления массивов а и d.

Вариант 2

16 26 95 35 30 94 84 16 39 13 55 1 10 89 20 64 67 33 77 91

1. Многопутевое слияние. n = 3.

2. Многофазная сортировка: разбиение и слияние. n = 6 (5 — для разбиения, 6-ой — для слияния)

Для каждой сортировки проиллюстрировать работу алгоритма на заданных числах.

Для многофазной сортировки: изложить алгоритм по шагам; привести формулы вычисления массивов а и d.

Вариант 3

86 75 83 92 24 45 94 30 78 58 17 48 87 59 33 81 26 44 5 21

- 1. Естественное слияние на 4 файлах.
- 2. Многофазная сортировка: разбиение и слияние. n = 5 (4 для разбиения, 5-ый для слияния)

Для каждой сортировки проиллюстрировать работу алгоритма на заданных числах.

Для многофазной сортировки: изложить алгоритм по шагам; привести формулы вычисления массивов а и d.

Коллоквиум 2 Вариант 1

- 1. Построить сбалансированное дерево для чисел
- 72 87 65 19 88 6 17 67 18 38 30 14 9 71 95
- 2. Построить оптимальное дерево поиска, указать его стоимость.
- d = 10 20 30 40
- $p = 3 \ 1 \ 5 \ 9$
- $q = 8 \ 3 \ 1 \ 5 \ 2$

Вариант 2

- 1. Построить сбалансированное дерево для чисел
- 6 79 62 0 60 39 92 83 33 56 20 68 49 95 51
- 2. Построить оптимальное дерево поиска, указать его стоимость
- d = 10 20 30 40
- $p = 3 \ 1 \ 5 \ 2$
- $q = 3 \ 1 \ 5 \ 9 \ 4$

Каждый из двух коллоквиумов оценивается по шкале 5 баллов. Критерии оценки коллоквиума:

Ответ	Оценка
Уверенно и правильно ответил на	5
вопросы.	
Ответил на вопросы с	4
небольшими замечаниями.	
Ответил на вопросы, но с	3
серьезными замечаниями.	
Не ответил на вопросы.	2

Итоговая оценка за экзамен формируется как среднее двух оценок, округленное до ближайшего целого.

2) в письменной форме или в эквивалентной электронной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Первая часть представляет собой тест из 3-5 вопросов. Ответы на вопросы первой части даются путем выбора из списка предложенных.

Вторая часть содержит 2 вопроса, оформленные в виде практических задач. Ответы на вопросы второй части предполагают решение задач и краткую интерпретацию полученных результатов.

Примеры задач:

Задача 1.

Дано:

Последовательность чисел

65 21 32 81 78 68 86 99 24 68 43 43 80 77 64 49 46 58 2 24

n = 6.

n-1 – количество файлов для разбиения, n-ый файл - для слияния.

Требуется:

Реализовать многофазную сортировку на заданных числах: разбиение и слияние для заданного \mathbf{n} . Привести формулы вычисления массивов \mathbf{a} и \mathbf{d} .

Задача 2.

Дано:

Последовательность чисел

6 79 62 0 60 39 92 83 33 56 20 68 49 95 51

Требуется:

Построить сбалансированное дерево для заданных чисел. При построении указать повороты.

Задача 3.

Дано:

Последовательность чисел

65 21 32 81 78 68 86 99 24 68 43 43 80 77 64 49 46 58 2 24

Требуется:

Реализовать сортировку методом многопутевого слияния на п файлах. n=3

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Критерии оценки ответов:

Ответ	Оценка
Уверенно и правильно ответил на	отлично
вопросы.	
Ответил на вопросы с	хорошо
небольшими замечаниями.	
Ответил на вопросы, но с	удовлетворительно
серьезными замечаниями.	
Не ответил на вопросы.	неудовлетворительно

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Примеры вопросов (ИОПК-7.1)

1. Алгоритм КМП поиск. Продемонстрируйте работу алгоритма на конкретных данных.

P[10] = "fafbafafb";

S[31] = "fafafafabbfafbafafbaaaafafbabb";

2. Задача Коммивояжера. Показать на примере поиск пути минимальной стоимости с помощью эвристики №2, для заданной матрицы стоимости. Начальный город 3.

	0	5	11	6	4
	8	0	3	8	5
C =	3	5	0	2	4
	6	6	2	0	4
	5	2	7	1	0

3. Дано: Массив целых чисел размерности N=12. Отсортировать массив методом Шелла с **шагом** $h_0 = n/2$, $h_i = h_{i-1}/2$, ..., $h_{t}=1$. Продемонстрировать работу алгоритма на примере.

11141 0.01	110			AA1-1/ 2	_,	,	1.	POA.	0111011	• 1 P 11	Pobu	TD P		,	op	11100 11	- 11p	iiiii P	
indexes	0	1	2	3	4	5	6	7	8	9	10	11							
	4	10	6	2	7	2	-1	4	11	12	0	3							

4. Дано: Массив целых чисел размерности N=12. Отсортировать массив методом **Хоар.** Продемонстрировать работу алгоритма на примере.

indexes	0	1	2	3	4	5	6	7	8	9	10	11				
	4	10	6	2	7	2	-1	4	11	12	0	3				

Примеры задач (ИОПК-7.1, ИОПК-7.2, ИОПК-7.3):

Задача 1.

Дано: Последовательность чисел

65 21 32 81 78 68 86 99 24 68 43 43 80 77 64 49 46 58 2 24

n = 6

n-1 – количество файлов для разбиения, n-ый файл - для слияния.

Требуется:

Реализовать многофазную сортировку на заданных числах: разбиение и слияние для заданного n. Привести формулы вычисления массивов a и d.

Задача 2.

Дано: Последовательность чисел

6 79 62 0 60 39 92 83 33 56 20 68 49 95 51

Требуется:

Построить сбалансированное дерево для заданных чисел. При построении указать повороты.

Залача 3.

Дано: Последовательность чисел

65 21 32 81 78 68 86 99 24 68 43 43 80 77 64 49 46 58 2 24

Требуется:

Реализовать сортировку методом многопутевого слияния на n файлах. n=3

Информация о разработчиках

Андреева Валентина Валерьевна, к.т.н., доцент, доцент кафедры компьютерной безопасности.

Голубева Ольга Ивановна, к.т.н., доцент, доцент кафедры компьютерной безопасности.