Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Рабочая программа дисциплины

Синтез химико-фармацевтических препаратов

по специальности

04.05.01 Фундаментальная и прикладная химия

Специализация:

Фундаментальная и прикладная химия

Форма обучения **Очная**

Квалификация **Химик / Химик-специалист. Преподаватель химии**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП В.В. Шелковников

Председатель УМК В.В. Шелковников

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1. Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений в различных областях химии;
- ОПК-2. Способен проводить синтез, анализ, изучение структуры и свойств веществ и материалов, исследовать процессы с их участием;
- ОПК-3. Способен применять расчетно-теоретические методы для изучения свойств веществ и процессов с их участием, используя современное программное обеспечение и базы данных профессионального назначения;
- ПК-1. Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области химии, химической технологии или смежных с химией науках.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК 1.1 Знает теоретические основы неорганической, органической, физической и аналитической химии, применяет их при решении профессиональных задач в других областях химии.
- РООПК 1.2 Умеет систематизировать и интерпретировать результаты экспериментов и расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии
- РООПК 1.3 Умеет грамотно формулировать заключения и выводы по результатам работы
- РООПК 2.1 Знает стандартные приемы и операции, используемые при получении веществ неорганической и органической природы
- РООПК 2.2 Знает теоретические основы методов изучения состава, структуры и свойств для грамотного выбора метода исследования
- РООПК 2.3 Умеет проводить стандартные синтезы по готовым методикам, выполнять стандартные операции для определения химического и фазового состава веществ и материалов, а также использовать серийное научное оборудование для изучения их свойств
- РООПК 3.1 Знает основы теоретической физики, математического анализа и квантовой химии; основные теоретические и полуэмпирические модели, применяемые при решении задач химической направленности
- РОПК 1.1 Умеет разрабатывать стратегию научных исследований, составляет общий план и детальные планы отдельных стадий.
- РОПК 1.2 Умеет выбирать экспериментальные и расчетно-теоретические методы решения поставленной задачи, используя достижения современной химической науки, и исходя из имеющихся, материальных, информационных и временных ресурсов.

2. Задачи освоения дисциплины

- Применять нормативно-техническую документацию и показания средств измерений для осуществления регламентированного синтеза и анализа фармацевтических субстанций
- Предлагать оптимальные технологические схемы получения фармацевтических субстанций
- Выполнять расчеты по разработке стадий технологических процессов получения фармацевтических субстанций.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Модуль Фармацевтическая и медицинская химия, химия природных соединений.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Седьмой семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: фармацевтическая химия, органическая химия.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-лекции: 16 ч.

-лабораторные: 32 ч.

в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

1. Тема 1. Теоретические основы синтеза лекарственных препаратов

Введение в предмет синтеза лекарственных препаратов. Зарождение и эволюция органической химии лекарственных веществ. Классификация, структура и функции биологически активных соединений. Направления и методы получения биологически активных соединений. Общие закономерности и методология тонкого органического синтеза биологически активных соединений.

Темы лекций:

Введение в предмет. Зарождение и эволюция органической химии лекарственных веществ. Классификация, структура и функции биологически активных веществ. Направления и методы получения биологически активных веществ. Общиезакономерности синтеза биологически активных веществ.

Название практических работ:

Решение задач по методам получения биологически активных веществ.

Названия лабораторных работ:

Экстрактивные методы получения бетулина из коры березы (бересты) на основеэндемичного Западной Сибири сырья.

Синтез фенотиазина – важнейшего полупродукта в синтезе лекарстенных препаратов.

Синтез аллантоина.

Тема 2. Технологические особенности получения полупродуктов и лекарственных препаратов

Основные методы химических превращений органических веществ. Условия проведения процессов синтеза и контроля лекарственных препаратов. Реакции образования простых и сложных эфиров. Реакции галогенирования. Реакции сульфирования и сульфохлорирования. Реакции нитрования и нитрозирования. Реакции акцилирования и алкилирования. Реакции окисления и восстановления. Реакции диазотирования и азосочетания.

Темы лекций:

Основные методы химических превращений органических веществ. Условия проведения синтеза и контроля лекарственных препаратов. Реакции этерификации, галогенирования, сульфирования, нитрования, ацилирования и алкилирования.

Основные методы химических превращений органических веществ. Условия проведения синтеза и контроля лекарственных препаратов. Реакции окисления, восстановления, диазотирования и азосочетания, конденсации и перегруппировки.

Название практических работ:

Решение задач по классификации химических реакций, механизмы реакций получения биологически активных соединений.

Названия лабораторных работ:

Синтез аспирина ацилированием ацетилсалициловой кислоты. Синтез нитроитазола нитрованием имидазола

Тема 3. Основы стратегии синтеза новых лекарственных препаратов

Поиск и разработка новых биологически активных соединений. Основы стратегии создания новых синтетических лекарственных препаратов. Технологии скрининга. Понятия Drug design, Docking, Research&Development Industry. Связь структура – биологическая активность. Терапевтическая эффективность. Фармацевтические факторы.

Темы лекций:

Рациональные пути поиска и разработки новых биологически активных соединений. Основы стратегии создания новых синтетических лекарственных вешеств.

Скрининг биологически активных соединений. Понятия Drug design, Docking, Research&Development Industry. Связь структура – биологическая активность. Терапевтическая эффективность. Фармацевтические факторы.

Названия лабораторных работ:

Синтез гликолурила.

Тема 4. Основы стратегии приготовления лекарственных препаратов на основе фармацевтических субстанций

Основные требования, предъявляемые к лекарственным веществам. Получение готовых лекарственных форм как заключительная стадия производства лекарственного препарата.

Темы лекций:

Основные требования, предъявляемые к лекарственным веществам. Получение готовых лекарственных форм как заключительная стадия производства лекарственных препаратов.

Лекарства нового поколения. Особенности их производства и оценка качества. Супрамолекулярная химия для нужд медицины и биологии.

Название практических работ:

Решение задач на выполнение материального баланса стадии, нескольких стадий.

Названия лабораторных работ:

Супрамолекулярная химия для создания лекарственных препаратов их адресной доставки на примере синтеза кукурбит[6]урила

Тема 5. Законодательство в сфере обращения лекарственных препаратов

Нормативно-правовая база в сфере обращения лекарственных средств (Φ 3 161 «Об обращении Π С», Правила надлежащей практики, Φ 3 -99 «О лицензировании отдельных видов деятельности», Рекомендации EAЭС № 3 от 29.01.2019 «Руководство по производству лекарственных средств», Рекомендации EAЭС №10 от 19.03.2019 «Информационный справочник понятий», Правила регистрации лекарственных средств EAЭС решение № 78 от 3.11.2016.

Доклинические и клинические исследования. Экспертиза лекарственных средств. Государственная регистрация. Контроль качества. Применение, уничтожение лекарственных средств. Общие понятия о лицензировании деятельности по производству лекарственных средств. Сертификат соответствия производителя лекарственных средств требованиям правил надлежащей производственной практики (Сертификат GMP). Статус, ответственность производителя.

Темы лекций:

- 1. Нормативно-правовая база в сфере обращения лекарственных средств
- 2. Жизненный цикл лекарственных средств.

Название практических работ:

Сертификат соответствия производителя лекарственных средств требованиям правил надлежащей производственной практики

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, практических и лабораторных работ, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в седьмом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в среде электронного обучения iDO
- https://lms.tsu.ru/enrol/index.php?id=33433
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Задачник по ИК- и ЯМР-спектроскопии лекарственных препаратов и биологически активных соединений: учебное пособие: [для магистрантов по Автономноймагистерской программе "Трансляционные химические и биомедицинские технологии"] / А. А. Бакибаев, С. Ю. Паньшина, О. В. Пономаренко [и др.]; Мин-во науки и высшего образования Рос. Фед., Нац. исслед. Томский гос. ун-т. Томск: Издательский ДомТомского государственного университета, 2019. 123 с.
- Синтез биологически активных веществ и лекарственных соединений: учебное пособие: [по автономной магистерской программе "Трансляционные химические и биомедицинские технологии"] / А. А. Бакибаев, М. В. Ляпунова, В. С. Мальков [и др.]; М-во науки и высш. образования Рос. Фед., Нац. исслед. Том. гос. ун-т. Томск: Издательский Дом Томского государственного университета, 2019. 48 с.
- Иозеп А. А. Химическая технология фармацевтических субстанций / Иозеп А. А., Пассет Б. В., Самаренко В. Я., Щенникова О. Б. Санкт-Петербург : Лань, 2022. 384 с.. URL: https://e.lanbook.com/book/201629
- Коваленко Л. В. Биохимические основы химии биологически активных веществ : учебное пособие 3-е изд. [Электронный ресурс] / Л. В. Коваленко. Электрон. дан. Москва : Лаборатория знаний, 2015. 323 с. Режим доступа: https://e.lanbook.com/book/70702
- Карлов С. С., Нуриев В. Н., Теренин В. И., Зайцева Г. С. Задачи по общему курсу органической химии с решениями для бакалавров : учебное пособие 2-е изд. [Электронный ресурс] / С. С. Карлов, В. Н. Нуриев, В. И. Теренин, Г. С. Зайцева Электрон. дан. Москва : Лаборатория знаний, 2016. 496 с. Режим доступа: https://e.lanbook.com/book/70689

б) дополнительная литература:

- Миронович Л. М. Гетероциклические соединения с тремя и более гетероатомами : учебное пособие [Электронный ресурс] / Л. М. Миронович. Электрон. дан. Санкт-Петербург : Лань, 2017. 208 с. Режим доступа: https://e.lanbook.com/book/96859
- Травень В. Ф. Органическая химия : учебное пособие : в 3 томах 4-е, изд. [Электронный ресурс] / В. Ф. Травень. Электрон. дан. Москва : Лаборатория знаний, [б. г.]. Том 1-2015.-401 с. Режим доступа: https://e.lanbook.com/book/84108
 - Травень В. Ф. Органическая химия: учебное пособие: в 3 томах 4-е, изд.

- [Электронный ресурс] / В. Ф. Травень. Электрон. дан. Москва : Лаборатория знаний, [б. г.]. Том 2 2015. 550 с. Режим доступа: https://e.lanbook.com/book/84109
- Травень В. Ф. Органическая химия: учебное пособие: в 3 томах 4-е, изд. [Электронный ресурс] / В. Ф. Травень. Электрон. дан. Москва: Лаборатория знаний, [б. г.]. Том 3 2015. 391 с. Режим доступа: https://e.lanbook.com/book/84110
- Душенков В., Раскин И. Новая стратегия поиска природных биологических активных веществ [Электронный ресурс] / Душенков В., Раскин И. Электрон. дан.
- // Физиология растений. 2008. Т. 55, № 4. С. 624-628. Режим доступа: <u>https://elibrary.ru/item.asp?id=11031762</u>
 - в) ресурсы сети Интернет:
- Общероссийская Сеть КонсультантПлюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных:
 - Справочник химических веществ (http://charchem.org/ru/subst-ref).
- База данных физико-химических свойств и синтезов веществ (http://chemister.ru/Database/search.php).
- Spectral Database for Organic Compounds (SDBS) база данных содержит более 30 тыс. органических веществ, главным образом из числа тех, которые можно встретить в каталогах реактивов. В базе данных имеются спектры ЯМР (на ядрах 1 H и 13 C) для ок. 15 тыс. веществ (https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi)

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатории, оборудованные: УФ-спектрофотометр, Мешалка магнитная, Термостат твердотельный, Микроскоп бинокулярный, Весы аналитические, Настольная центрифуга, Шкаф вытяжной, Лабораторная центрифуга, Центрифуга с ротором, Шкаф сушильный, Холодильник лабораторный, Колбонагреватель, Шкаф сушильный

вакуумный; Вентилятор; ИК-спектрометр Agilent 660 FTIR; Печь двухкамерная программируемая, Термостатируемый шейкер, Перемешивающее устройство, Ламинарный шкаф.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Бакибаев Абдигали Абдиманапович, д-р. хим. наук, профессор кафедра природных соединений, фармацевтической и медицинской химии Национального исследовательского Томского государственного университета, профессор.

Разгуляева Юлия Дмитриевна, САЕ «Институт умные материалы и технологии», ассистент.