Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Цифровая обработка сигналов

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки / специализация: Радиоэлектронные системы передачи информации

Форма обучения **Очная**

Квалификация **Инженер**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-9 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.
- ПК-3 Способен формулировать математические модели процес-сов и явлений, происходящих в радиоэлектронных системах и на их основе проводить компьютерное моделирование и оптимизацию.
- ПК-4 Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 9.1 Применяет современные инструментальные системы программирования и компьютерного моделирования при решении прикладных задач.
 - ИОПК 9.2 Владеет навыками работы в компьютерной среде.
- ИПК 3.1 Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах
- ИПК 3.2 Разрабатывает математические модели исследуемых физических процессов, приборов, схем и электронных систем
- ИПК 4.1 Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации
- ИПК 4.2 Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров
- ИПК 4.3 Применяет стандартные прикладные программные средства при проведении модельных экспериментов

2. Задачи освоения дисциплины

- Освоить технические средства цифровой обработки сигналов.
- Научиться применять понятийный аппарат предмета для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Восьмой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам:

Б1.П.В.ДВ.05.01 Устройства приема и обработки сигналов, Б1.П.В.ДВ.05.02 Основы построения систем связи специального назначения и криптографической защиты информации, Б1.О.В.ДВ.02.01 Основы теории радиосистем передачи информации, Б1.О.О.03 Устройства генерирования и формирования сигналов.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых: -лекции: 30 ч.

Объем самостоятельной работы студента определен учебным планом.

2. Компетенции и результаты обучения, формируемые в результате освоения дисциплины/модуля

Таблина 1

Таблица 1					
Компетенция	Индикатор компетенции	Код и наименование результатов обучения (планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций)			
ОПК-9. Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.	иопк -9.1. Применяет современные инструментальные системы программирования и компьютерного моделирования при решении прикладных задач.	OP 9.1.1. Обучающийся сможет применять современные инструментальные системы программирования и компьютерного моделирования при решении прикладных задач.			
ПК-3. Способен формулировать математические модели процес-сов и явлений, происходящих в радиоэлектронных системах и на их основе проводить компьютерное моделирование и оптимизацию.	 ИПК -3.1 Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах. ИПК -3.2 Разрабатывает математические модели исследуемых физических процессов, приборов, схем и электронных систем. 	 ОР-3.1.1. Обучающийся сможет использоват фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах. ОР-3.2.1. Обучающийся сможет разрабатывать математические модели исследуемых физических процессов, приборов, схем и электронных систем. 			
ПК-4 Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ.	ИПК -4.1 Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации. ИПК -4.2 Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров. ИПК -4.3 Применяет стандартные прикладные программные средства при проведении модельных экспериментов.	ИПК -4.1 Обучающийся сможет применять прикладные методы моделирования процессов в радиоэлектронных системах передачи информации. ИПК -4.2 Обучающийся будет владеть приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров. ИПК -4.3 Обучающийся сможет применять стандартные прикладные программные средства при проведении модельных экспериментов.			

3. Структура и содержание дисциплины/модуля

3.1. Структура и трудоемкость видов учебной работы по дисциплине

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108часа.

Таблица 2

Вид учебной работы	Трудоемкость в академических		
	часах		
Общая трудоемкость	8 семестр	всего	
Контактная работа:	31,75 ч	31,75 ч	

Лекции (Л):	28	28
Практические занятия (ПЗ)	X	X
Лабораторные работы (ЛР)	X	X
Семинарские занятия (СЗ)	X	X
Групповые консультации	3.5	3.5
Индивидуальные консультации	X	X
Промежуточная аттестация	0.25	0.25
Самостоятельная работа обучающегося:	76,25	76,25
- изучение учебного материала	20	20
- подготовка к лабораторным работам	X	X
- выполнение контрольных заданий	56.25	56.25
Вид промежуточной аттестации	зачет	зачет

3.2. Содержание и трудоемкость разделов дисциплины

Таблица 3

							таолица 3
Код занят ия	Наименование разделов и тем и их содержание	Вид учебной работы, занятий, контроля	Семестр	Часы в электрон ной форме	Всего (час.)	Литература	Код (ы) результата(ов) обучения
	Раздел 1. Основные понятия и определения теории передачи цифровых сигналов						
1.1.	Историческая перспектива. Преобразование Фурье с непрерывным временем и дискретное преобразование Фурье. Соотношение между ними. Периодические повторения спектров. Свертка дискретных сигналов. Методы сверхразрешения. Мера количества информации. Энтропия источника дискретных сообщений. Статистические свойства источников сообщений. Скорость передачи информации и пропускная способность канала. Помехоустойчивое кодирование.	Лекции	8		2	№1, №2, №3, №6, №7,	OP-9.1.1, OP-3.1.1, OP-3.2.1
1.3.	Изучение учебного материала	CPC	8	2	2	№1, №2, №3, №6, №7,	OP-9.1.1, OP- 3.1.1, OP-3.2.1
	Раздел 2. Метод периодограмм в пространственном и временном спектральном анализе						
2.1.	Быстрое преобразование Фурье (БПФ). Перестановка данных и двоичная инверсия. Прореживание по частоте и прореживание по времени. Разрешение. Теорема Котельникова (отсчетов). Метод периодограмм и метод коррелограмм. Многомерный спектральный анализ сигналов и полей. Графическое представление спектров. Проблемы оценивая частоты, амплитуды сигналов. Спектральный анализ пространственных сигналов и полей. Пространственные частоты. Спектр пространственных частот и угловой спектр. Мнимые углы. Использование окон в спектральном анализе. Дискретная фильтрация. Спектральный анализ последовательности импульсов.	Лекции	8		8	№1, №2, №3	OP-9.1.1, OP-3.1.1, OP-3.2.1, OP-4.1.1
2.3.	Изучение учебного материала	CPC	8	2	4	№1, №2, №3	OP-9.1.1, OP- 3.1.1, OP-3.2.1, OP-4.1.1
	Раздел 3. Элементы теории приема и обработки цифровых сигналов						

3.1.	Энергетический спектр и спектральный анализ случайных сигналов и полей. Характеристики согласованных и оптимальных фильтров. Методы регуляризации в задаче оценки спектров	Лекции	8			4	№1, №2, №3, №6, №7,	OP-9.1.1, OP- 3.1.1, OP-3.2.1
3.3.	Изучение учебного материала	CPC	8			2	№1, №2, №3, №6, №7,	OP-9.1.1, OP- 3.1.1, OP-3.2.1
	Раздел 4. Основы вейвлет преобразования сигналов							
4.1.	Свойства вейвлет функций. Непрерывное вейвлет-преобразование. Обратное преобразование. Дискретное вейвлет-преобразование. Практическое использование	Лекции	8			4	№ 9	OP-4.2.1, OP- 4.2.2, OP-4.2.3
4.3.	Изучение учебного материала	CPC		11	2	2	№ 9	OP-4.2.1, OP- 4.2.2, OP-4.2.3
	Раздел 5. Модуляция и демодуляция сигналов							
5.1.	Классификация сигналов и методов модуляции. Методы амплитудной, фазовой и частотной модуляции и демодуляции. Принципы амплитудной и частотной манипуляции. Принципы импульсной и цифровой модуляции.	Лекции		11		12	№ 7	OP-3.2.2, OP- 4.2.1, OP-4.2.2, OP-4.2.3
5.3.	Изучение учебного материала	СРС	8		2	8	№7	OP-3.2.2, OP- 4.2.1, OP-4.2.2, OP-4.2.3
	Выполнение контрольных заданий	CPC	8			56.25	№ 1-9,	OP-9.1.1, OP- 3.2.2, OP-4.2.1, OP-4.2.2, OP- 4.2.3
	Групповые консультации					3.5		
	Промежуточная аттестация					0.25		

4. Образовательные технологии, учебно-методическое и информационное обеспечение для освоения дисциплины/модуля

В образовательном процессе используется технология развивающего обучения с привлечением исследовательских методов, которая дает возможность учащимся самостоятельно пополнять свои знания, глубоко вникать в изучаемую проблему и предполагать пути ее решения. Используется технология проблемного обучения с созданием в учебной деятельности проблемных ситуаций и организации активной самостоятельной деятельности учащихся по их разрешению, в результате чего происходит творческое овладение знаниями, умениями, навыками, развиваются мыслительные способности. В процессе обучения используется тестирование студентов по темам с использованием ресурсов MOODLE. Общая логика хода освоения дисциплины заключается в: ознакомлении со структурой курса, используя рабочую программу и электронный учебный курс (ЭУК); ознакомлении с методическими рекомендациями по использованию электронного учебного курса; использовании записи лекции и материалов ЭУК накануне следующей лекции вспомнить материал предыдущей; использовании презентации соответствующего раздела ЭУК накануне следующей лекции ознакомиться с ее примерным содержанием; изучении теоретического материала по учебнику и регулярной подготовке к практическим и лабораторным занятиям путем решения домашнего задания.

Самостоятельная работа включает в себя: изучение рекомендуемой учебной литературы; рассмотрение примеров решений типовых задач и вариантов ответов; решения задач из сборника задач; рассмотрение информационных ресурсов по изучаемой теме в сети Интернет.

Процедура промежуточной аттестации по дисциплине заключается в: проведении устного зачёт по лекционному материалу с разбором разработанной программы на заданную тему. Для аттестации используются результаты контрольных работ.

Контрольные вопросы к зачету по дисциплине:

Какие основные задачи решает цифровой спектральный анализ. Идеи быстрого преобразования Фурье. Понятие углового спектра. Особенности двумерного спектрального анализа сигналов полей. Особенности AM и FM модуляции. Прямое обратное вейвлет преобразование. Метод периодограмм при пространственном спектральном анализе. Использование амплитудного взвешивания данных в цифровом Согласованная оптимальная спектральном анализе. И фильтрация при обнаружении сигнала. Вейвлет-преобразования сигналов.

4.1. Литература и учебно-методическое обеспечение

Основная литература

- 1. Якубов В.П. Статистическая радиофизика: Учебное пособие. Томск: Изд-во НТЛ, 2006. 132 С.
- 2. Алан В. Оппенгейм, Рональд В. Шафер. Цифровая обработка сигналов. Техносфера, 2012. 1048 с.
- 3. В. Волосюк, О. Горячкин. Цифровая обработка сигналов и изображений. ФИЗМАТЛИТ, 2007. 552 с.
- 4. Кирьянов Д. В. К43 Mathcad 15/Mathcad Prime 1.0. СПб.: БХВ-Петербург, 2012. 432 с.

Дополнительная литература

- 5. Сергиенко А. Б. Цифровая обработка сигналов. 2-е. СПб.: Питер, 2007. С. 751.
- 6. Тропченко А Ю., Тропченко А.А. Цифровая обработка сигналов. Методы предварительной обработки. Учебное пособие по дисциплине "Теоретическая информатика". СПб: СПбГУ ИТМО, 2009. 100 с.
- 7. Макс Ж. Методы модуляции и кодирования в современных системах связи Наука. Ленинградское отделение, 2017. 402 с.
- 8. Дьяконов В., Абраменкова И. МАТLAB. Обработка сигналов и изображений. Специальный справочник. СПб.: Питер, 2002. 608 с.
- 9. Смоленцев Н.К. Основы теории вейвлетов. Вейвлеты в matlab. 5-е издание 2019. 560 стр.

4.2. Базы данных и информационно-справочные системы, в том числе зарубежные

1. Шипилов С.Э., Клоков А.В. Цифровой спектральный анализ сигналов и полей [Электрон. ресурс]: электронный учебный курс на базе виртуальной обучающей среды MOODLE Электрон. дан. – Томск: ТГУ, 2014. – URL: http://moodle.tsu.ru/course/view.php?id=13846

4.3. Перечень лицензионного и программного обеспечения

Электронные учебные курсы на базе виртуальной обучающей среды MOODLE; системные пакеты Matlab, MatCad; пакет MS Office.

4.4. Оборудование и технические средства обучения

Освоение дисциплины обеспечено наличием демонстрационной аппаратуры, компьютерных классов общей числом рабочих мест – 40 для выполнения лабораторных занятий и индивидуальной работы, с выходом в Интернет на сайт http://info.rff.tsu.ru.

5. Методические указания обучающимся по освоению дисциплины

Методические указания включают контрольные вопросы для самостоятельной работы, темы лабораторных занятий и примеры практических задач.

Контрольные вопросы для самостоятельной работы:

Назовите основные способы спектрального анализа. Какие положения лежат в основе методов сверхразрешения. Укажите недостатки преобразования Фурье с непрерывным временем. Поясните назначение окна в спектральном анализе и дискретной фильтрации. Что такое пространственная частота. Как выглядит передаточная характеристика согласованного фильтра? Оптимальный фильтр.

Согласованный фильтр. Теорема Котельникова. Метод периодограмм при временном спектральном анализе.

Примеры контрольных заданий

- 1. Метод периодограмм при временном спектральном анализе сигналов
- Изменяя шаг дискретизации Δt при постоянных длительности радиоимпульса t и времени регистрации T, проследить как шаг дискретизации Δt влияет на ширину спектра и на сохранение формы спектра.
- Смоделировать регистрацию радиоимпульса разной длительности t и c разным временем появления импульса t0 при постоянных Δt и T. Определить, что меняется в спектре и почему.
- Смоделировать регистрацию радиоимпульса в течении разного времени регистрации T при постоянных Δt и t . Установить зависимость ширины

максимума спектра (ширины боковых лепестков) от времени регистрации Т. Смоделировать регистрацию периодической последовательности одиночных прямоугольных радиоимпульсов. Число и скважность импульсов получить у преподавателя. Чем спектр последовательности импульсов отличается от спектра одиночного импульса?

- Смоделировать регистрацию одиночного прямоугольного видеоимпульса (на нулевой частоте) длительностью t с различным отношением сигнал/шум. Проследить как этот параметр влияет на амплитудный и фазовый спектр сигнала. При каких значениях отношения сигнал/шум еще можно оценить положение и ширину главного максимума спектра.
- На примере монохроматического сигнала при t=T, t0=0 смоделировать "эффект маскирования" (подмены высокой частоты более низкой). Представить графики и объяснить полученные результаты.
- 2. Метод периодограмм при пространственном спектральном анализе сигналов
- Смоделировать регистрацию монохроматического сигнала частотой 50 МГц на линейной антенной решетке из N = 32 элементов с расстоянием между элементами d = 1 м и построить графики спектра пространственных частот и углового спектра для разных углов прихода сигнала (значения амплитуд и углов прихода получить у преподавателя). Чем отличаются угловой спектр и спектр пространственных частот?
- Смоделировать регистрацию, рассчитать спектр пространственных частот и угловой спектр для разных частот приходящего сигнала. Установить зависимость ширины спектра и формы спектра от частоты и расстояния между элементами решетки d. Сопоставить результаты с теоремой Котельникова. Частоту менять в пределах 10 100 МГц, расстояние d в пределах 0,1 10 м. Сопоставление проводить для двух углов прихода сигнала: один равен 0о, другой равен 10о.
- Каким образом операция прореживания спектра помогает разделить сигналы, пришедшие с близких угловых направлений? В доказательство приведите несколько графиков.
- На какие спектральные характеристики влияет длина антенной решетки ? Смоделировать регистрацию сигнала с постоянными f0 и d на линейной антенной решетке при N = 8, 16, 32 64, рассчитать спектр пространственных частот и угловой спектр.
- Проанализировать влияние шума на спектр пространственных частот и угловой спектр. При каком отношении сигнал / шум восстановление параметров сигналов становится невозможным?

6. Преподавательский состав, реализующий дисциплину

Кандидат физ.-мат. наук, доцент Кузьменко И.Ю.; доктор физ.-мат. наук, профессор Шипилов С.Э.; кандидат физ.-мат. наук, доцент Клоков А.В.

7. Язык преподавания – русский