Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Системы виртуализации и контейнеризации

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2024

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-2 Способен применять программные средства системного и прикладного назначений, в том числе отечественного производства, для решения задач профессиональной деятельности.

ПК-2 Способен разрабатывать требования к программно-аппаратным средствам защиты информации компьютерных систем и сетей.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-2.1 Понимает базовые принципы функционирования программных средств системного и прикладного назначений, в том числе отечественного производства, используемых для решения задач профессиональной деятельности

ИОПК-2.2 Определяет порядок настройки и эксплуатации программных средств системного и прикладного назначений, в том числе отечественного производства, используемых для решения задач профессиональной деятельности

ИОПК-2.3 Формулирует предложения по применению программных средств системного и прикладного назначений, в том числе отечественного производства, используемых для решения задач профессиональной деятельности

ИПК-2.3 Проводит исследования с целью нахождения наиболее целесообразных практических решений по обеспечению защиты информации

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

– групповой проект.

Групповой проект (ИОПК-2.1, ИОПК-2.2, ИОПК-2.3, ИПК-2.3)

Студенты объединяются в команды для выполнения группового проекта. Проект заключается в разработке и реализации инфраструктуры предприятия в сфере виртуализации и контейнеризации различного программного обеспечения. В ходе выполнения проекта студент выполняет работы, соответствующие текущей фазе проекта.

Выполнение проекта ведется во время лабораторных работ и во время самостоятельной работы студента.

Текущий контроль осуществляется путем проверки для каждого студента выполнения необходимых действий для текущей фазы проекта.

Примеры заданий для групповых проектов:

- 1. Установка виртуальной машины с операционной системой Windows 10 Enterprise.
 - Необходимо загрузить и выполнить установку VirtualBox.
 - Создать виртуальную машину с динамическим диском на 80 гб.
 - После загрузить образ Windows 10 Enterprise и загрузиться в среду установки ОС.
 - Далее необходимо используя командную строку:
 - с помощью утилиты DiskPart создать разделы диска и отформатировать их;
 - с помощью утилиты DISM развернуть образ Windows 10;
 - с помощью bcdboot создать загрузочную запись;
 - создать общую папку для гостевой системы;
 - сконфигурировать один сетевой интерфейс как сетевой мост.
- 2. Определить необходимую технологию виртуализации рабочих мест (RDS/VDI) для определенного предприятия. Рассмотреть и выбрать подходящий вариант ПО, которое реализует функционал RDS/VDI. Развернуть и сконфигурировать данное ПО согласно описанной задаче. Даны следующие варианты:

- а. Есть предприятие N, имеющее более 60+ сотрудников. Было закуплена лицензия специализированного математического ΠO , которая позволяет лицензировать одно рабочее место, без учета одновременного количества запусков ΠO .
- b. Есть предприятие M, имеющее около 200 сотрудников. Было закуплена сетевая лицензия ПО для проведения моделирования сложных физических процессов на 30 пользователей. Ожидаемое максимальное одновременное количество пользователей данного ПО около 23.
- 3. Реализуйте контейнер для LAMP (стек ПО для веб-приложений, включает в себя Apache HTTP Server, MySQL и PHP).
- 4. Продумайте и опишите план для контейнеризации и оркестрирования микросервисного веб приложения с распределенной БД. Реализуйте конфигурацию Kubernetes согласно данному плану.

Критерии оценивания:

«отлично» — студент выполнил 100% запланированных работ по групповому проекту;

«хорошо» – студент выполнил не менее 75% запланированных работ по групповому проекту;

«удовлетворительно» — студент выполнил не менее 50% запланированных работ по групповому проекту;

«неудовлетворительно» – студент выполнил менее 50% запланированных работ по групповому проекту.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзаменационный билет состоит из одной части, которая содержит один вопрос, проверяющий ИОПК-2.1. Ответ на вопрос дается в развернутой форме.

Теоретические вопросы к экзамену (ИОПК-2.1):

- 1. Виртуализация. Основные понятия.
- 2. Технологии аппаратной виртуализации.
- 3. Виды виртуализации.
- 4. Основные направления развития виртуализации.
- 5. Типы и основные гипервизоры.
- 6. Серверная виртуализация.
- 7. Виртуализация рабочих мест.
- 8. Remote Desktop Services.
- 9. Virtual Desktop Infrastructure.
- 10. Технология Docker.
- 11. Основные понятия и архитектура Kubernetes.
- 12. Контейнеризация.
- 13. Основные объекты Kubernetes.
- 14. Улучшение производительности виртуальной машины.

Итоговая оценка по предмету (экзамен) выставляется следующим образом:

«отлично» — студент выполнил не менее 75% запланированных работ по групповому проекту, выполнил все лабораторные работы, нет неудовлетворительных оценок за контрольные работы, средняя (округленная) оценка за контрольные работы — «отлично», на теоретический вопрос дан развернутый ответ;

«хорошо» – студент выполнил не менее 75% запланированных работ по групповому проекту, выполнил все лабораторные работы, нет неудовлетворительных оценок за

контрольные работы, средняя (округленная) оценка за контрольные работы – «хорошо», на теоретический вопрос дан подробный ответ;

«удовлетворительно» – студент выполнил не менее 75% запланированных работ по групповому проекту, выполнил все лабораторные работы, нет неудовлетворительных оценок за контрольные работы, средняя (округленная) оценка за контрольные работы – «удовлетворительно», на теоретический вопрос дан неполный ответ;

«неудовлетворительно» – студент не сдал лабораторные работы, не выполнил 75% запланированных работ по групповому проекту или сдал хотя бы одну контрольную работу на «неудовлетворительно», не ответил на теоретический вопрос.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Теоретические вопросы (ИОПК-2.1, ИОПК-2.2):

1. Виртуализация. Основные понятия.

Виртуализация. Основные понятия. Технологии аппаратной виртуализации. Виды виртуализации. Преимущества. Основные направления развития и области применения.

2. Гипервизоры.

Гипервизоры. Основные задачи. Типы гипервизоров. Программное обеспечение виртуализации. Российские аналоги.

3. Виртуализация ІТ-инфраструктуры.

Облачные вычисления. Модели использования сервисов облачных вычислений. Виртуализация сети. Виртуализация хранения. VMware vSphere. OpenStack. Основные преимущества виртуальной IT-инфраструктуры в облаке.

4. Контейнеризация

Понятие контейнеризации. Преимущества и недостатки

5. Docker.

Управление контейнерами

6. Kubernetes.

Задачи, основные компоненты, преимущества. Программное обеспечение оркестрации контейнеров

7. Docker Compose.

Возможности. Основные команды

8. Безопасность контейнеров.

Управление безопасностью контейнеров

Информация о разработчиках

Шкуркин Алексей Сергеевич, канд. техн. наук, доцент, доцент кафедры прикладной информатики.