Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан С. Н.Филимонов

Рабочая программа дисциплины

Материаловедение и технологии полупроводников

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: **Фундаментальная и прикладная физика**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП С.Н. Филимонов

Председатель УМК О.М. Сюсина

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости

ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать

2. Задачи освоения дисциплины

Данный курс «Материаловедение и технология полупроводников» разработан для обеспечения всестороннего и глубокого понимания фундаментальных принципов, управляющих поведением материалов, с особым акцентом на полупроводники и развивающийся класс квантовых материалов. Основная цель курса – освоить сложный концептуальный аппарат квантовой механики и физики твердого тела, выходящий далеко за рамки традиционных полупроводников. Это включает в себя всестороннее понимание теории электронной зонной структуры и явлений переноса носителей заряда, которые составляют основу для понимания всех электронных материалов. В программе курса подробно рассматривается физика топологических защищенных состояний вещества, охватывающая двумерные и трехмерные топологические изоляторы, а также уникальные квантовые явления, которые они демонстрируют, такие как квантовый эффект Холла (КЭХ), квантовый спиновый эффект Холла (КСЭХ) и квантовый аномальный эффект Холла (КАЭХ). Курс предлагает теоретическую основу, отличающую эти фазы от обычных изоляторов и полупроводников, включая роль спин-орбитальной связи и симметрии относительно обращения времени. Кроме того, курс охватывает ключевые концепции квантового транспорта, такие как слабая локализация и антислабая локализация, которые необходимы для диагностики фазовой когерентности и спинзависимого рассеяния в наномасштабных и низкоразмерных системах. Эта продвинутая теоретическая база имеет решающее значение для выхода за рамки классической физики полупроводников и понимания новых правил, управляющих поведением электронов в квантовом режиме.

Конечная цель данного курса – применение этого продвинутого концептуального аппарата для решения сложных задач профессиональной деятельности в области исследований и разработок. Теоретические знания о топологических зонных структурах непосредственно применяются интерпретации ДЛЯ сложных экспериментов по изоляторах, магнитотранспорту В топологических где наличие зашишенных поверхностных состояний выявляется через специфические сигнатуры продольного и холловского сопротивления. Понимание различий между КЭХ, КСЭХ и КАЭХ позволяет специалисту разрабатывать новые спинтронные устройства с низкой диссипацией или предлагать новые платформы для топологических квантовых вычислений. Концепции слабой и антислабой локализации становятся практическими диагностическими инструментами для материаловедов, характеризующими качество и когерентные свойства тонких пленок и наноструктур. Аналогично, анализ поведения полуметаллов с линейной дисперсией зон требует применения этого передового аппарата для моделирования высокочастотных характеристик и управления температурой в электронике нового незаменим поколения. набор навыков решения задач ДЛЯ ориентированных на передовые разработки в области материаловедения, включая разработку квантовых материалов, расширенную характеристику полупроводников и проектирование энергоэффективных пост-КМОП-технологий. Таким образом, курс устраняет критический разрыв между абстрактной квантовой теорией и реальными технологическими инновациями, предоставляя студентам возможность внести свой вклад в развитие современной электроники и материаловедения.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения курса необходимы результаты обучения по следующим дисциплинам: основы статистической физики, физика твердого тела, основы физики полупроводников, квантовая механика.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 14 ч.
- -практические занятия: 14 ч.
 - в том числе практическая подготовка: 6 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Физика полупроводников: электронные зоны и явления переноса

предлагает фундаментальное глубокое исследование физики полупроводников, устанавливая прямую связь между атомной структурой материала и его макроскопическими электронными и оптическими свойствами. В этой теме мы начнем с фундаментальных принципов роста кристаллов, образования связей и атомной структуры, которые определяют основу всех последующих явлений, обсудим динамику решеточных фононов и их роль в тепловых свойствах и удельной теплоемкости, а затем рассмотрим квантово-механическую природу электронной зонной структуры, включая физику запрещенных зон и магнитных полупроводников. Значительное внимание будет уделено взаимодействию света с веществом, включая взаимодействие фотонов с фононами, свободными электронами и межзонными переходами, включая экситонные эффекты. Курс содержит подробный анализ дефектов кристаллов и интерфейсов, объясняя их глубокое влияние на поведение материалов. Наконец, мы рассмотрим всестороннюю картину переноса заряда, от статистики равновесия и механизмов рассеяния до эффектов сильных полей и магнитотранспорта, и в заключение рассмотрим динамику генерационнорекомбинационного взаимодействия, управляющую полупроводниковыми приборами.

Тема 2. Теория мезоскопических и наноразмерных полупроводников

Тема посвящена подробному изучению изменений электронных, оптических и транспортных свойств полупроводников при уменьшении их физических размеров до наномасштаба, что требует фундаментального отхода от классических теоретических рамок, применимых к объемным материалам. В этом разделе предлагается теоретическая основа для понимания эффектов квантового ограничения, начиная с детального того, как плотность состояний преобразуется из непрерывной исследования параболической функции в трех измерениях в дискретные атомоподобные состояния в квантовых точках, ступенчатые функции в квантовых ямах и сингулярности Ван Хова в квантовых проволоках, что фундаментально меняет статистическую механику носителей заряда. Мы разовьем теорию возмущений кр и приближение огибающей функции как основные инструменты для расчета сложных зонных структур этих наноструктур, критически изучив смешивание валентных зон и возникающие в результате этого изменения экситонные эффекты, когда кулоновские взаимодействия значительно усиливаются пространственным ограничением. Тема будет углублена в область квантового транспорта, где будет сформулирован формализм Ландауэра-Бюттикера для моделирования баллистической проводимости в мезоскопических системах, тем самым

Эта тема обеспечивает всестороннее понимание теории топологических фаз вещества, начиная с основополагающего уравнения Дирака и его решений для связанных состояний. Мы рассмотрим ограничения описания Дирака и введем квадратично скорректированные модели для понимания возникновения топологических граничных состояний, включая конечные состояния в одном измерении, спиральные краевые состояния в двумерных квантовых спиновых холловских изоляторах и поверхностные состояния в трех измерениях. Учебная программа связывает непрерывные теории поля с решеточными моделями, развивая минимальные гамильтонианы сильной связи для описания топологических изоляторов в различных измерениях. Основное внимание уделяется соответствию объем-граница и роли симметрии относительно обращения времени с использованием таких инструментов, как число Черна и анализ четности в инвариантных относительно обращения времени импульсах для классификации фаз. Курс предлагает экспериментальные реализации в таких материалах, как квантовые ямы HgTe/CdTe и семейство Bi₂Se₃, анализируя их уникальные физические свойства, такие как отсутствие обратного рассеяния и слабая антилокализация. Наконец, мы рассмотрим сложные темы, включая формализм Ландауэра-Бюттикера для переноса краевых состояний, физику тонких пленок топологических изоляторов и индуцированную беспорядком топологическую фазу, известную как топологический изолятор Андерсона.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность зачета с оценкой 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=00000
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских / практических занятий по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Böer K.W. Semiconductor physics / K.W. Böer, U.W. Pohl. Springer, 2023. 1419.

Jena D. Quantum physics of semiconductor materials and devices / D. Jena. Oxford University Press. 2022. - 868.

Cardona M. Springer Series in Solid-State Sciences / M. Cardona, P. Fulde, K. von Klitzing, R. Merlin, H.-J. Queisser, H. Stormer (Series Eds.) Springer. 2012. –225.

Bernevig B.A. Topological insulators and topological superconductors / B.A. Bernevig, T.L. Hughes. 2013. - 262.

- б) дополнительная литература:
- Ortmann F. Topological insulators Fundamentals and perspectives / F. Ortmann, S. Roche, S.O. Valenzuela. Wiley VCH. 2015. 434.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы
 - Журнал «Эксперт» http://www.expert.ru
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных (при наличии):
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Кумар Ниранджан, кандидат физ.-мат. наук, ТГУ, кафедра физики полупроводников, доцент.