Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан С.Н. Филимонов

Рабочая программа дисциплины

Дифференциальная геометрия и топология

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: **Фундаментальная и прикладная физика**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости
- ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать
- ИПК-1.3 Владеет навыками аналитической переработки информации, проведения исследований с помощью современной аппаратуры и информационных технологий, обобщения и представления результатов, полученных в процессе решения задач исследования

2. Задачи освоения дисциплины

- Освоить концепции топологического пространства и гладкого многообразия как общего подхода к определению непрерывных и гладких структур на множествах.
- Сформировать представление о дифференциальной геометрии как неотъемлемой части понятийного аппарата современной теоретической и математической физики.
- Изучить основы геометрии гладких многообразий и связанных с ними дифференциально-геометрических конструкций;
- Освоить приложения дифференциальной геометрии для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений. Дисциплина относится к дисциплинам по выбору.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет с оценкой.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: высшая математика.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых: -лекции: 32 ч.

-практические занятия: 32 ч.

в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение.

Дифференциальная геометрия как язык теоретической физики.

Тема 2. Основы дифференциальной геометрии

Отображения, карты, атласы. Определение и примеры гладких многообразий. Гладкие отображения. Касательное пространство. Касательное расслоение. Векторные поля. Интегральные кривые векторных полей. Теорема о выпрямляемости. Дифференциал гладкого отображения. Подмногообразия Интегрируемые распределения. Теорема Фробениуса. Теоремы вложения.

Тема 3. Основные понятия топологии.

Топология многообразия. Понятие топологического пространства. Непрерывные отображения и гомеоморфизмы. Подпространства топологического пространства. Отношения эквивалентности, факторпространства. Хаусдорфовы пространства. Связные пространства. Аксиомы счетности. Компактные пространства.

Тема 4. Операции с линейными пространствами.

Прямая сумма, тензорное произведение линейных пространств. Сопряженное и комплексно сопряженное пространства. Тензоры на линейном пространстве. Тензорный закон преобразования. Умножение тензоров. Тензорная алгебра. Свертка тензора. Тензоры как полилинейные функционалы. Подъем и опускание индексов. Подстановка индексов. Симметризация и альтернирование тензора. Внешняя алгебра на линейном пространстве.

Тема 5. Векторные расслоения.

Определение и примеры векторных расслоений. Операции с векторными расслоениями: прямая сумма, тензорное произведение, дуальное расслоение, тензорная алгебра. Подрасслоения и факторрасслоения, внешняя алгебра расслоения, редукция расслоения.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проверки и обсуждения задач практических занятий и коллоквиума и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой в 3 семестре проводится в устной форме по экзаменационным билетам. Зачет с оценкой проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей: теоретической и практической. Продолжительность зачета с оценкой 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

а) Электронный учебный курс по дисциплине в электронном университете «Moodle» -

https://moodle.tsu.ru/course/view.php?id=96 https://moodle.tsu.ru/course/view.php?id=24827

- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
 - в) План практических занятий по дисциплине
 - 1. Примеры гладких многообразий.
 - 2. Понятие топологического пространства.
 - 3. Непрерывные отображения и гомеоморфизмы.
 - 4. Векторные поля. Интегральные кривые векторных полей. Теорема о выпрямляемости.
 - 5. Дифференциал гладкого отображения.
 - 6. Подпространства и подмногообразия.
 - 7. Интегрируемые распределения. Теорема Фробениуса.
 - 8. Факторпространства.
 - 9. Хаусдорфовы пространства.
 - 10. Связные пространства.
 - 11. Компактные пространства.
 - 12. Прямая сумма, тензорное произведение линейных пространств. Сопряженное и комплексно сопряженное пространства.
 - 13. Тензоры на линейном пространстве.
 - 14. Внешняя алгебра на линейном пространстве.
 - 15. Векторные расслоения.
 - 16. Операции с векторными расслоениями: прямая сумма, тензорное произведение, дуальное расслоение, тензорная алгебра. Подрасслоения и факторрасслоения, внешняя алгебра расслоения, редукция расслоения. Теоремы вложения.
 - г) Методические указания по организации самостоятельной работы студентов. Самостоятельная работа студентов состоит из следующих частей:
 - проработка конспекта;
 - проработка материала по одному из основных рекомендованных учебников;
 - самостоятельное решение задач и подготовка к практическим занятиям;
 - проработка дополнительных материалов по дисциплине в соответствии с тематикой учебной практики

Примерные темы рефератов для самостоятельной углубленной работы студентов в соответствии с тематикой учебной практики:

- 1) Главные и ассоциированные расслоения. Расслоения с типичным слоем.
- 2) Связности в главных и ассоциированных расслоениях.
- 3) Калибровочные поля как связности в главных и ассоциированных расслоениях.
- 4) Производная Ли тензорного поля Векторные поля Киллинга.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. С.П.Новиков, И.А. Тайманов. Современные геометрические структуры и поля. М.: МІІНМО. 2005. 584 с.
- 2. Б.А. Дубровин, С.П. Новиков, А.Т. Фоменко. Современная геометрия: методы и приложения. М.: Наука. 1979. 760 с.
- 3. Ю.Г. Борисович, Н.М. Близняков, Я.А. Израилевич, Т.Н. Фоменко. Введение в топологию. М. Наука, Физматлит. 1995. 416 с.
- 4. Ф. Уорнер. Основы теории гладких многообразий и групп Ли. М.: Мир. 1987. 304 с.
- 5. М.М. Постников. Лекции по геометрии. Семестр III. Гладкие многообразия. М.: Наука. Физ.-мат. лит. 1987.-480 с.
- 6. М.М. Постников. Лекции по геометрии. Семестр IV. Дифференциальная геометрия. М.: Наука. Физ.-мат. лит. 1987. 496 с.
- 7. В.В. Трофимов. Введение в геометрию многообразий с симметриями. М.: Изд-во МГУ. 1989.-360 с.

- 8. И.П. Волобуев, Ю.А. Кубышин. Дифференциальная геометрия и алгебры Ли и их приложения в теории поля. М.: Эдиториал УРСС. 1998. 224 с
 - б) дополнительная литература:
- 1. Ш. Кобаяси, К. Номидзу. Основы дифференциальной геометрии. В 2 т. М. Наука. 1981. 344 с.+344 с.
- 2. М.М. Постников. Лекции по геометрии. Семестр V. Риманова геометрия. М.: Изд-во «Факториал». 1998.-496 с.
- 3. J.E. Marsden, T. Ratiu, R. Abraham. Manifolds, Tensor Analysis, and Applications. Third Edition. Springer. 2007. ii+ii+599 p.
- 4. С. Стернберг. Лекции по дифференциальной геометрии. М.: Мир. 1970. 412с.
- 5. А.С. Мищенко, А.Т. Фоменко. Курс дифференциальной геометрии и топологии. М.: Изд-во МГУ. 1980.-440 с.
- 6. А.Т. Фоменко, С.П. Новиков. Элементы дифференциальной геометрии и топологии. М.: Наука. 1987. 432 с.
- 7. С. Хелгасон. Дифференциальная геометрия и симметрические пространства. М.: Мир. 1964. 534 с.
- 8. А.Т. Фоменко. Дифференциальная геометрия и топология. Дополнительные главы. М.: Изд-во МГУ. 1983. 216 с.
- 9. Р. Зуланке, П. Винтген. Дифференциальная геометрия и расслоения. М.: Мир. 1975. 352 с.
- 10. Р. Уэллс. Дифференциальное исчисление на комплексных многообразиях. М.: Мир. 1973. 288 с.
- 11. Ф. Гриффитс, Дж. Харрис. Принципы алгебраической геометрии. В 2 т. М.: Мир. 1982. --- 496 c.+366 с.
- 12. А.Т. Фоменко. Наглядная геометрия и топология. Математические образы в реальном мире. М.: Изд-во МГУ. 1992. 432 с.
- 13. Н. Стинрод, У. Чинн. Первые понятия топологии. М.: Мир. 1967. 224 с.

в) ресурсы сети Интернет:

Differential geometry

https://en.wikipedia.org/wiki/Differential geometry

Glossary of differential geometry and topology

https://en.wikipedia.org/wiki/Glossary of differential geometry and topology

Lecture Notes on Differential Geometry

http://people.math.gatech.edu/~ghomi/LectureNotes/

М.О. Катанаев Геометрические методы в математической физике. Приложения в квантовой механике. Часть 1

http://www.mathnet.ru/links/960e758fab2c06fbb3eb09f8d38973ed/book1603.pdf

М. О. Катанаев Геометрические методы в математической физике. Приложения в квантовой механике. Часть 2

http://www.mathnet.ru/links/308446cb279f9352012e4a8468f2406f/lkn26.pdf

- M. О. Катанаев Математические основы общей теории относительности. Часть 1 http://www.mathnet.ru/links/0ad2738fafc64fb0024fdca2b494a1a8/book1699.pdf
- M. О. Катанаев Математические основы общей теории относительности. Часть 2 http://www.mathnet.ru/links/5a547795171174f5a34b57aeb3702eb8/lkn29.pdf

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- а) лицензионное и свободно распространяемое программное обеспечение:

- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешанном формате («Актру»).

15. Информация о разработчиках

Горбунов Иван Владиславович, кандидат физико-математических наук, доцент, кафедра теоретической физики физического факультета ТГУ, доцент.