Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Научно-образовательный центр Передовая инженерная школа «Агробиотек»

Оценочные материалы по дисциплине

Биологическая физика

по специальности

36.05.01 Ветеринария

специализация: Ветеринария

Форма обучения **Очная**

Квалификация **Ветеринарный врач**

Год приема **2025**

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способен использовать базовые знания естественных наук при анализе закономерностей строения и функционирования органов и систем органов, общепринятые и современные методы исследования для диагностики и лечебно-профилактической деятельности на основе гуманного отношения к животным.

УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК 1.1 Использует базовые знания естественных наук при анализе закономерностей строения и функционирования органов и систем органов
 - ИУК 1.1 Применяет алгоритмы анализа задач, выделяя их базовые составляющие
- ИУК 1.2 Находит и критически анализирует информацию, необходимую для решения поставленной задачи
- ИУК 1.3 Аргументировано формулирует собственные суждения и оценки с использованием системного подхода.

2. Оценочные материалы текущего контроля и критерии оценивания

Контрольные вопросы (ИПК 1.1, ИУК 1.1, ИУК 1.2, ИУК 1.3)

1 «Снятие спектральной характеристики порога слышимости уха»

Механические волны и их разновидности. Параметры, характеризующие волны.

- 2 Природа звука. Источники звука.
- 3 Объективные (физические) и субъективные параметры звука. Единицы измерения параметровзвука.
- 4 Порог слышимости, громкость, уровень интенсивности, единицы измерения.
- 5 Связь между объективными и субъективными параметрами звука. Закон Вебера-Фехнера.
- 6 Строение уха и физические функции элементов структур уха.
- 7 Аудиометрия, аудиограмма, аудиометр и его устройство.
- 8 Звуковые методы в клинике: перкуссия, аускультация и фонокардиография.
- 9 Твердые тела и их разновидности.
- 10 Механические свойства твердых тел. Упругость, вязкость, ползучесть материалов, эластичность,хрупкость.
- 11 Деформации твердых тел.
- 12 Механическое напряжение, абсолютная и относительная величина деформации.
- 13 Связь между механическим напряжением и величиной деформации. Закон Гука. Модуль

упругости (Юнга).

14 Кривая зависимости механического напряжения от величины деформации кристаллических

твердых тел.

- 15 Механические (реологические) модели упругих, вязких и упруго-вязких материалов (модели Максвелла, Фойгта, Пойтинга).
- 16 Зависимость между деформацией и напряжением для вязкоупругого материала.
- 17 Основные механические свойства тканей организма костей, кровеносных сосудов, легких.
- 18 Механические свойства жидкостей.
- 19 Внутреннее трение. Коэффициент вязкости.
- 20 Уравнение Ньютона для вязкой жидкости.

- 21 Зависимость вязкости жидкости от ее природы и температуры.
- 22 Ньютоновская и неньютоновская жидкости.
- 23 Определение коэффициента вязкости жидкости по методу Стокса.
- 24 Реологические свойства крови. Диагностическое значение коэффициента вязкости крови.
- 25 Устройство и принцип действия капиллярного медицинского вискозиметра.
- 9 Формула Пуазейля для объемной скорости течения жидкости.
- 10 Формула определения вязкости крови по капиллярному вискозиметру.
- ЛЗ.4 «Физические основы гальванизации. Изучение устройства и принципа действия аппарата гальванизации на модельной электрической схеме» (ОПК-1).

Критерии формирования оценки за устный ответ:

Полнота изложения материала, правильное определение основных понятий, понимание материала, обоснованность суждений, точность формулировок, адекватность применения терминологии, последовательное изложение материала.

Оценка «5 (отлично)» ставится, если обучающийся: полно и аргументировано отвечает по содержанию вопроса; обнаруживает понимание материала Оценка «4 (хорошо)» ставится, если обучающийся дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 1-2 ошибки, которые сам же исправляет.

Оценка «З (удовлетворительно)» ставится, если обучающийся обнаруживает знание и понимание основных положений темы, но: излагает материал неполно и допускает неточности в определении понятий; не умеет достаточно глубоко и доказательно обосновать

свои суждения и привести свои примеры; излагает материал непоследовательно и допускает

ошибки.

Оценка «2 (неудовлетворительно)» ставится, если обучающийся обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Вопросы к зачету (ИПК 1.1, ИУК 1.1,ИУК 1.2, ИУК 1.3)

- 1. Механические колебания. Характеристики гармонических колебаний: амплитуда, частота, период, фаза колебания. Уравнение гармонического колебательного процесса.
- 2. Затухающие колебания, коэффициент затухания, логарифмический декремент затухания.
- 3. Вынужденные колебания. Резонанс. Автоколебания.
- 4. Механические волны, их виды и скорость распространения. Уравнение волны.
- 5. Продольная и поперечная волны, формула расчета скорости звука в воздухе методом акустического резонанса.
- 6. Энергетические характеристики волны, поток энергии волны, интенсивность (плотность потока энергии).
- 7. Акустика. Физические характеристики звука: частота, интенсивность, спектральный состав звука.
- 8. Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- 9. Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости.
- 10. Связь между уровнями интенсивности и уровнями громкости, единицы

измерения - децибелы и фоны, связь между ними.

- 11. Аудиометрия. Фонокардиография. Отражение и поглощение звуковых волн.
- 12. Ультразвук. Физические принципы ультразвуковой диагностики.
- 13. Методы получения и регистрации ультразвука.
- 14. Эффект Доплера и его применение для неинвазивного измерения скорости кровотока.
- 15. Инфразвук. Биофизические основы действия инфразвука на биологические объекты.
- 16. Сущность физического явления поверхностного натяжения. Коэффициент поверхностного натяжения.
- 17. Явление смачивания и несмачивания. Капиллярные явления их значение в биологических системах. Газовая эмболия.
- 18. Основные понятия гидродинамики. Условие неразрывности струи.
- 19. Внутреннее трение (вязкость). Формула Ньютона, динамическая вязкость жидкости, единицы ее измерения.
- 20. Ньютоновские и неньютоновские жидкости.
- 21. Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- 22. Уравнение Бернулли. Применение уравнения Бернулли для исследования кровотока в крупных артериях и аорте (закупорка артерии, артериальный шум, поведение аневризмы).
- 23. Формула Пуазейля, гидравлическое сопротивление.
- 24. Устройство вискозиметра Оствальда, определение с его помощью вязкости исследуемой жидкости.
- 25. Методы определения вязкости: метод Стокса, ротационный метод.
- 26. Реологические свойства крови. Факторы, влияющие на вязкость крови в организме человека.
- 27. Особенности течения крови по крупным и мелким кровеносным сосудам. Пульсовая волна.
- 28. Работа и мощность сердца.
- 29. Методы определения давления крови.
- 30. Транспорт веществ через мембраны.
- 31. Пассивный транспорт. Простая и облегченная диффузия.
- 32. Математическое описание пассивного транспорта.
- 33. Активный транспорт ионов. Механизм активного транспорта на примере натрий-калиевого насоса.
- 34. Мембранные потенциалы и их ионная природа. Потенциал покоя.
- 35. Механизм генерации потенциала действия.
- 36. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам.
- 37. Общие характеристики и классификация датчиков.
- 38. Градуировка термопары, термистора и проволочного терморезистора.
- 39. Усилители. Коэффициент усиления усилителя.
- 40. Требования к усилителям биопотенциалов. Многокаскадное усиление. Классификация усилителей.
- 41. Амплитудная характеристика усилителя. Амплитудные искажения. Частотная характеристика усилителя. Частотные искажения. Полоса пропускания усилителя.
- 42. Основные характеристики электрического поля.
- 43. Электрический диполь. Поле диполя. Диполь в электрическом поле.
- 44. Первичные механизмы воздействия электростатических полей на биологические объекты.
- 45. Применение постоянных электрических полей в физиотерапии.

- 46. Физические основы электрографии тканей и органов. Электрокардиография.
- 47. Дипольный эквивалентный электрический генератор сердца.
- 48. Теория отведений Эйнтховена.
- 49. Понятие о мультипольном эквивалентном электрическом генераторе сердца. Электрокардиограф.
- 50. Электропроводность биологических тканей и жидкостей для постоянного тока.
- 51. Первичные механизмы действия постоянного тока на живую ткань.
- 52. Гальванизация. Лечебный электрофорез.
- 53. Переменный ток.
- 54. Различные виды электрических сопротивлений в цепи переменного тока.
- 55. Импеданс. Физические основы реографии.
- 56. Сопротивление живой ткани переменному току, его зависимость от частоты тока.
- 57. Эквивалентная электрическая схема живой ткани.
- 58. Основные характеристики магнитного поля.
- 59. Магнитные свойства веществ. Магнитные свойства биологических тканей.
- 60. Первичные механизмы воздействия магнитных полей на организм.
- 61. Терапевтическое использование магнитных полей.
- 62. Электростимуляция тканей и органов.
- 63. Параметры импульсного сигнала и их физиологическое значение.
- 64. Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона.
- 65. Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Уравнение Вейса-Лапика.
- 66. Аппаратура для электростимуляции. Примеры использования электростимуляции в клинике. Электростимуляция сердца и ее виды.
- 67. Воздействие высокочастотных токов и полей на организм.
- 68. Основные первичные механизмы воздействия. Тепловые и нетепловые эффекты.
- 69. Высокочастотная электромедицинская аппаратура. Классификация высокочастотных физиотерапевтических методов. Электрохирургия. Местная дарсонвализация, индуктотермия, УВЧ-, МКВ-, ДЦВ- и КВЧ-терапия.

Критерии оценивания:

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если даны правильные ответы на все вопросы теста, на теоретический вопрос дан развернутый ответ и все задачи решены без ошибок.

Оценка «хорошо» выставляется, если даны правильные ответы с небольшими неточностями и ошибками.

Оценка «удовлетворительно» выставляется если ответы неуверенные и со значительными ошибками. Оценка «неудовлетворительно» выставляется если учащийся не смог дать ответ на вопрос.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Контрольные вопросы (ИПК 1.1, ИУК 1.1,ИУК 1.2, ИУК 1.3)

- 1 Что из себя представляет оптический прибор, предназначенный для получения увеличенного изображения исследуемого объекта?
- 2 Какое увеличение дает система объектив-окуляр?

- 3 Какое увеличение дает объектив?
- 4 Какое увеличение дает окуляр?
- 5 Укажите формулу линейного увеличения объектива?
- 6 Укажите формулу углового увеличения окуляра?
- 7 Что такое разрешающая способность микроскопа?
- 8 От чего зависит предел разрешения микроскопа?
- 9 Формула числовой апертуры?
- 10.Показатель преломления воздуха.
- 11.Оптическая длина тубуса микроскопа.
- 12 Цена деления винтового окулярного микрометра.
- 13 Укажите границы длин волн видимого света
- 14 По какой формуле определяются размеры величины микрообъекта?
- 15 Что такое оптическая линза?
- 16 По какой формуле определяется полное увеличение микроскопа?
- 17 Что такое устройство, у которого пространство между наблюдаемым предметом и объективом заполняется жидкостью с показателем преломления, близким к показателю преломления стекла?
- 18 Что такое аберрация?
- 19 Что такое иммерсионный объектив?
- 20 Предел разрешения. Разрешающая способность микроскопа.

Критерии формирования оценки за устный ответ:

Полнота изложения материала, правильное определение основных понятий, понимание материала, обоснованность суждений, точность формулировок, адекватность применения терминологии, последовательное изложение материала.

Оценка «5 (отлично)» ставится, если обучающийся: полно и аргументировано отвечает по содержанию вопроса; обнаруживает понимание материала Оценка «4 (хорошо)» ставится, если обучающийся дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 1-2 ошибки, которые сам же исправляет.

Оценка «З (удовлетворительно)» ставится, если обучающийся обнаруживает знание и понимание основных положений темы, но: излагает материал неполно и допускает неточности в определении понятий; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; излагает материал непоследовательно и допускает ошибки.

Оценка «2 (неудовлетворительно)» ставится, если обучающийся обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал.

Информация о разработчиках

Светлик Михаил Васильевич, кандидат биологических наук, кафедра физиологии человека и животных, доцент.