Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт экономики и менеджмента

Рабочая программа дисциплины

Эконометрика

по направлению подготовки

38.04.01 Экономика

Направленность (профиль) подготовки: **Анализ данных в экономике**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО:

Руководитель ОП

Ден Н.А. Скрыльникова

Председатель УМК

М.В. Герман

Томск - 2024

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен применять продвинутые инструментальные методы экономического анализа в прикладных и (или) фундаментальных исследованиях;
- ОПК-5 Способен использовать современные информационные технологии и программные средства при решении профессиональных задач.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ОПК-2.1. Применяет продвинутые инструментальные методы экономического анализа в прикладных исследованиях;
- ОПК-2.2. Применяет продвинутые инструментальные методы экономического анализа в фундаментальных исследованиях;
- ОПК-5.1. Применяет современные информационные технологии и программные средства при решении профессиональных задач;

2. Задачи освоения дисциплины

- Освоить основные статистические и эконометрические методами, применяемыми при анализе экономических процессов и их взаимосвязей;
- Научиться строить математические модели экономических процессов и их прогнозировать.
- Применять пакеты прикладных программ для построения моделей наблюдаемых процессов, их анализа и прогнозирования.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 1, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- лекции: 18 ч.;
- практические занятия: 28 ч.;
- в том числе практическая подготовка: 28 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Корреляционно-регрессионный анализ.

Корреляционный анализ количественных данных. Ранговая корреляция. Корреляционный анализ категоризованных данных. Линейные модели регрессии. МНКоценки параметров. Теорема Гаусса-Маркова. Проверка качества уравнения регрессии.

Нарушение условия Гаусса-Маркова. Случай смещенного шума. Случай коррелированных наблюдений. Гетероскедастичность. Обобщенный методы наименьших квадратов. Теорема Айткена. Фиктивные переменные. Мультиколлинеарность. Нелинейные модели.

Тема 2. Системы структурных уравнений.

Классификация систем эконометрических (структурных) уравнений. Структурная и приведенная формы. Определение идентификации системы структурных уравнений. Необходимое и достаточное условие идентификации. Косвенный метод наименьших квадратов. Двухшаговый метод наименьших квадратов.

Тема 3. Анализ временных рядов.

Основные определения. Структура и компоненты временного ряда. Выявление случайной составляющей. Выявление циклической составляющей. Аналитические и алгоритмические методы оценки функции тренда. Подбор порядка аппроксимирующего полинома. Некоторые модели временных рядов.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, тестов по лекционному материалу, выполнения лабораторных работ и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом семестре проводится в форме теста, включающего в себя как вопросы по теории, так и решение небольших практических задач, проверяющих ОПК-2.1, ОПК-2.2, ОПК-5.1:

Тест состоит из 15 вопросов разной сложности, за каждый из которых можно набрать от 1 до 3 баллов. Максимум за тест 30 баллов.

Баллы	Оценка
[26 -30]	Отлично
[21-26)	Хорошо
[16 - 21)	Удовлетворительно
[0 -16)	Неудовлетворительно

Примеры вопросов теста

- 1. Коэффициент детерминации может определяться как отношение:
 - а) остаточной суммы квадратов к общей сумме квадратов;
 - б) общей суммы квадратов к остаточной сумме квадратов;
 - в) объясненной суммы квадратов к общей сумме квадратов;
 - г) общей суммы квадратов к объясненной сумме квадратов;
 - д) остаточной суммы квадратов к объясненной сумме квадратов.
- 2. Средняя ошибка аппроксимации вычисляется по формуле:

a)
$$\frac{1}{n-1} \sum (y_i - \bar{y})^2$$

6)
$$\frac{1}{n-2} \sum (y_i - \hat{y}_i)^2$$

$$\mathbf{B}) \ \frac{1}{n} \sum \left| \frac{y_i - \overline{y}}{y_i} \right| \cdot 100\%$$

$$\Gamma \frac{1}{n} \sum \left| \frac{y_i - \hat{y}_i}{y_i} \right| \cdot 100\%$$

- 3. Обобщенный метод наименьших квадратов применяется в случае:
 - а) некоррелированных гомоскедастичных наблюдений;
 - б) коррелированных наблюдений;
 - в) гетероскедастичных наблюдений;
 - г) мильтиколлинеарности.
- 4. При проведении регрессионного анализа были получены результаты

	R = 0.9804	$R^2 = 0.9$	R_{adj}^2	= 0.9608		
	$F(1.98) = 2428.9 p < 0.0000 \qquad S_e = 29.278$					
n = 100	b^*	b	S_b	t(98)	p – value	
Intercept		20.33116	7.726744	2.63127	0.009882	
X	0.9804	4.99870	0.101427	49.28397	0.000000	

Чему равна оценка среднего ожидаемого значения зависимой переменной при значении факторной переменной равной 100. Ответ округлен до двух знаков после запятой.

- a) 2038,11
- б) 520,20
- в) 201,63
- r) 29,278
- 5. При проведении регрессионного анализа были получены результаты

	$R = 0.75708$ R^2		$0.57317 R_{adj}^2 = 0.47831$				
	$F(2,9) = 6.0427 p < 0.02169 \qquad S_e = 2.6908$						
n = 100	b^*	b	S_b	t(9)	p – value		
Intercept		-0.264215	0.960798	-0.27500	0.789529		
X1	0.848408	0.532183	0.152767	3.46097	0.007150		
X2	-0.460792	-0.334332	0.177861	-1.87974	0.092845		

Можно сделать вывод о том, что в модели

- а) нет значимых параметров;
- б) один значимый параметр;
- в) два значимых параметра;
- г) все параметры значимы.
- 6. По критерию Голдфельда Квандта были получены следующие результаты:

$$GQ = 6.7131$$
, $df1 = 22$, $df2 = 21$, p-value = 2.437e-05

Какой вывод можно сделать?

- а) имеется мультиколлинеарность
- б) нет мультиколлинеарности

- в) остатки гомоскедастичны
- г) остатки гетероскедастичны
- 7. Косвенным методом наименьших квадратов можно решать
 - а) неидентифицируемые системы;
 - б) строго идентифицируемые системы;
 - в) сверхидентифицируемые системы.
- 8. Двухшаговым методом наименьших квадратов можно решать
 - а) неидентифицируемые системы;
 - б) строго идентифицируемые системы;
 - в) сверхидентифицируемые системы.
- Пусть D количество экзогенных переменных, содержащихся в системе одновременных уравнений, но не входящих в рассматриваемое уравнение этой системы, а H – число эндогенных переменных, входящих в данное уравнение. Уравнение является сверхидентифицируемым, если
 - a) D+1 < H;
 - б) D+1=H;
 - в) D+1>H.
- 10. Дана система одновременных уравнений.

$$\begin{cases} y_1 = \beta_{12}y_2 + \beta_{13}y_3 + \theta_{11}x_1 + \theta_{12}x_2, \\ y_2 = \beta_{21}y_1 + \theta_{22}x_2 + \theta_{23}x_3, \\ y_3 = \beta_{31}y_1 + \beta_{32}y_2 + \theta_{31}x_1 + \theta_{33}x_3 + \theta_{34}x_4. \end{cases}$$

Второе уравнение системы является:

- а) идентифицирумым;
- б) неидентифициремым;
- в) сверхидентифицируемым.
- 11. Метод скользящего среднего относится к
 - а) аналитическим методам сглаживания временного ряда
 - б) алгоритмическим методам сглаживания временного ряда
- 12. Мультипликативная модель временного ряда в общем виде описывается уравнением
 - a) $y = a + bt + \varepsilon$
 - $δ) y = at^b ε$

B)
$$y(t) = f(t) + \varphi(t) + \psi(t) + \varepsilon(t)$$

$$\Gamma) \ y(t) = f(t) \cdot \varphi(t) \cdot \psi(t) \cdot \varepsilon(t)$$

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=16475
 - б) Видеозаписи лекционных и практических материалов;

- в) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине;
 - г) Методические указания по организации самостоятельной работы студентов.

Самостоятельная работа заключается в изучении основных теоретических и практических материалов, которые даются преподавателем на занятиях, а также изучении информации по темам курса из литературы и дополнительных источников, подготовке и выполнении лабораторных работ на компьютерах, подготовке к промежуточной и итоговой аттестации.

12. Перечень учебной литературы и ресурсов сети Интернет

а) основная литература:

- Прикладная статистика. Основы эконометрики : Учебник для экономических специальностей вузов: В 2 т. . Т. 1 / Авт. тома: С. А. Айвазян, В. С. Мхитарян. 2-е изд., испр.. М. : ЮНИТИ-ДАНА, 2001. 656 с.: табл., рис.
- Кендалл М. Д. Статистические выводы и связи / М. Кендалл, А. Стьюарт;
 Пер. с англ. Л. И. Гальчука, А. Т. Терехина; Под ред. А. Н. Колмогорова. М. : Наука. Физматлит, 1973. 899, [1] с.: ил.. URL: http://sun.tsu.ru/limit/2016/000074332/000074332.djvu
- Эконометрика: учебник для вузов / И. И. Елисеева [и др.]; под редакцией И. И. Елисеевой. Москва: Издательство Юрайт, 2022. 449 с. (Высшее образование). ISBN 978-5-534-00313-0. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/488603
- Кабанова Т. В. Применение пакета R для решения задач прикладной статистики: учебное пособие: [для студентов и аспирантов университетов] / Т. В. Кабанова; М-во образования и науки РФ, Нац. исслед. Том. гос. ун-т. Томск: Издательский Дом Томского государственного университета, 2019. 123 с.: ил., табл..

URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000668036

б) дополнительная литература:

Домбровский В. В. Эконометрика / В. В. Домбровский; подготовлено при содействии НФПК – Нац. фонда подготовки кадров в рамках Программы - "Совершенствование преподавания социально-экономических дисциплин в ВУЗах", Инновационного проекта развития образования. - Томск: [б. и.], 2016. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000550882

в) ресурсы сети Интернет:

- http://statsoft.ru/
- https://www.r-project.org/
- https://www.rstudio.com/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.);

- R https://www.r-project.org/;
- R Studio https://www.rstudio.com/.
- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ –

http://vital.lib.tsu.ru/vital/access/manager/Index

- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- ЭБС ZNANIUM.com https://znanium.com/
- 3FC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Кабанова Татьяна Валерьевна, кандидат физико-математических наук, доцент кафедры теории вероятностей и математической статистики ИПМКН ТГУ.