Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Теория информации

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен на основании совокупности математических методов разрабатывать, обосновывать и реализовывать процедуры решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-3.1 Демонстрирует навыки выполнения стандартных действий, решения типовых задач, формулируемых в рамках базовых математических дисциплин

ИОПК-3.2 Осуществляет применение основных понятий, фактов, концепций, принципов математики и информатики для решения задач профессиональной деятельности

ИОПК-3.3 Выявляет научную сущность проблем, возникающих в ходе профессиональной деятельности, и применяет соответствующий математический аппарат для их формализации, анализа и выработки решения

2. Задачи освоения дисциплины

- Ознакомить студентов с основными понятиями теории информации;
- изучить теоретические основы и математические модели, необходимые для исследования информационных процессов и кодирования в каналах связи;
- дать практические навыки вычисления количества информации, способов кодирования и расчета характеристик сигналов и каналов в рамках изучаемых методов.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в «Модуль «Компьютерные науки».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Восьмой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Теория вероятностей, Дискретная математика, Алгоритмы кодирования и сжатия информации.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-лекции: 32 ч.

-практические занятия: 16 ч.

в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Энтропия дискретных источников

Тема 1. Понятие собственной информации и энтропии

Тема 2. Равномерное кодирование дискретного источника

- Тема 3. Прямая теорема кодирования для дискретного постоянного источника
- Тема 4. Обратная теорема кодирования для дискретного постоянного источника
- Раздел 2. Неравномерное кодирование дискретных источников
 - Тема 1. Задача неравномерного побуквенного кодирования
 - Тема 2. Прямая и обратная теоремы неравномерного кодирования
 - Тема 3. Коды Хаффмена, Гилберта-Мура и Шеннона
 - Тема 4. Арифметическое кодирование
- Раздел 3. Кодирование дискретных источников при неизвестной статистике
 - Тема 1. Задача универсального кодирования источников
 - Тема 2. Двухпроходное побуквенное кодирование
 - Тема 3. Нумерационное кодирование
 - Тема 4. Адаптивное кодирование
- Раздел 4. Алгоритмы кодирования источников, применяемые в архиваторах
 - Тема 1. Монотонные коды, интервальное кодирование
 - Тема 2. Метод скользящего словаря
 - Тема 3. Методы Зива-Лемпела
 - Тема 4. Сжатие Барроуза-Уилера

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, выполнения практических заданий, выполнения домашних работ и фиксируется в форме контрольной точки не менее одного раза в семестр.

Практическая подготовка оценивается по результатам выполненных практических работ.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в восьмом семестре проводится в тестовой форме. Студенту предлагается тест из 16 вопросов. Правильный ответ на каждый вопрос оценивается в 0.5 балла.

Баллы теста суммируются с баллами за контрольные задания. Продолжительность зачета 1 час.

Оценка «зачтено» выставляется, если студент получил не менее 12 баллов.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в системе электронного обучения «IDO» https://lms.tsu.ru/course/view.php?id=12820
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Методические указания по проведению лекционных и практических занятий.

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и практическими занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

Занятия лекционного курса предполагают систематизированное изложение основных вопросов учебного плана. Они дают наибольший объем информации и обеспечивают более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

Практические занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения практических занятий является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также решение задач и разбор примеров и ситуаций в аудиторных условиях. Преподаватель осуществляет методическую помощь и консультирование студентов по соответствующим темам курса.

Активность на практических занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- решение задач;

выполнение проектных и иных заданий.

г) Методические указания по организации самостоятельной работы студентов.

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
- углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
- развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов образовательного учреждения.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель в рамках аудиторных занятий может проводить инструктаж по выполнению задания. В инструктаж включается:

- цель и содержание задания;
- сроки выполнения;
- ориентировочный объем работы;
- основные требования к результатам работы и критерии оценки;
- возможные типичные ошибки при выполнении.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

При самостоятельной проработке курса обучающиеся должны:

- повторить законспектированный на лекционном занятии материал и дополнить

его с учетом рекомендованной по данной теме литературы;

- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
- самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
- использовать для самопроверки материалы фонда оценочных средств;
- выполнять домашние задания по указанию преподавателя.

Домашнее задание оценивается по следующим критериям:

- степень и уровень выполнения задания;
- аккуратность в оформлении работы;
- использование специальной литературы;
- сдача домашнего задания в срок.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

По каждой теме курса студенту в течение семестра дается контрольное задание, всего 4 контрольных задания.

Критерии оценки контрольного задания:

- 0 баллов задание не представлено;
- 1 балл задание выполнено с существенными ошибками;
- 2 балла задание выполнено с несущественными ошибками;
- 3 балла задание выполнено без ошибок.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Кудряшов Б.Д. Теория информации. СПб: Питер, 2018. 320 с.
- Осокин А.Н., Мальчуков А.Н. Теория информации. М.: Юрайт, 2022. 205 с.
- б) дополнительная литература:
- Галлагер Т. Теория информации и надежная связь. М.: Советское радио, 1974. 720 с.
 - Демин Н.С. Буркатовская Ю.Б. Теория информации. Томск: ТГУ, 2007. 140 с.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - Anaconda3; Jupyter Notebook.
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/

- Образовательная платформа Юрайт https://urait.ru/
- ЭБС ZNANIUM.com https://znanium.com/
- 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Ерёмина Наталия Леонидовна, кандидат технических наук, доцент кафедры системного анализа и математического моделирования.