# Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

#### Теория эксперимента в исследованиях систем

по направлению подготовки

#### 24.03.03 Баллистика и гидроаэродинамика

Направленность (профиль) подготовки: **Баллистика и гидроаэродинамика** 

Форма обучения **Очная** 

Квалификация **Инженер, инженер-разработчик** 

Год приема **2024** 

СОГЛАСОВАНО: Руководитель ОПОП Е.И. Борзенко К.С. Рогаев

Председатель УМК В.А. Скрипняк

#### 1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-4 Способен осуществлять контроль соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам

ОПК-5 Способен учитывать современные тенденции развития техники и технологий в своей профессиональной деятельности

ОПК-6 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных, аргументировано защищать результаты выполненной работы

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РООПК-4.1 Знает принципы построения технического задания

РООПК-4.2 Умеет использовать нормативные и справочные данные при разработке проектно-конструкторской документации; оформлять проектно-конструкторскую документацию в соответствии со стандартами

РООПК-5.1 Знает методику учета современных тенденций развития техники и технологий в своей профессиональной деятельности

РООПК-5.2 Умеет учитывать современные тенденции развития техники и технологий в своей профессиональной деятельности

РООПК-6.1 Знает основные методы и средства проведения экспериментальных исследований, способы обработки и представления данных, системы стандартизации и сертификации

РООПК-6.2 Умеет выбирать способы и средства измерений и проводить экспериментальные исследования

#### 2. Задачи освоения дисциплины

- Освоить фундаментальные знания об основах физического моделирования.
- Научиться применять понятийный аппарат дисциплины для решения практических задач профессиональной деятельности.
- Научиться применять алгоритмы статистической обработки, интерпретации результатов экспериментов, методам вывода определяющих критериев подобия.
- Освоить современные методы и средства измерения основных физических величин.
- Овладеть навыками постановки эксперимента в задачах проектирования робототехнических систем (PTC).

#### 3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, является обязательной для изучения.

### 4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Девятый семестр, зачет

#### 5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Планирование эксперимента.

#### 6. Язык реализации

Русский

#### 7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 6 ч.
- -практические занятия: 24 ч.

Объем самостоятельной работы студента определен учебным планом.

#### 8. Содержание дисциплины, структурированное по темам

#### Тема 1. Основные принципы физического и математического моделирования

Краткое содержание темы: Введение в курс. Цели и задачи курса. Роль экспериментальных исследований в создании и отработке РТС. Понятие физической и математической модели. Понятие о физическом моделировании, его основные этапы, преимущества и недостатки. Понятие о математическом моделировании. Принципы и подходы к построению математической модели. Иерархия уровней математических моделей. Понятие о численных методах решения задач математической физики. Модели течения сплошных сред применительно к пневмо— и гидроприводам РТС. Гидравлический подход. Течения идеального сжимаемого газа (уравнения Эйлера). Ламинарные вязкие течения (уравнения Навье—Стокса). Турбулентные течения (уравнения Рейнольдса). Приближение пограничного слоя (уравнения Прандтля). Подходы к моделированию многофазных течений и течений с химическими реакциями. Связь физического и математического моделирования.

## **Тема 2.** Элементы теории погрешностей и математической обработки результатов измерения

Краткое содержание темы: Понятие об измерениях и измерительных приборах. Задача измерений. Прямые и косвенные измерения. Типы погрешностей измерений — систематические, случайные, грубые. Математическая обработка результатов измерений. Погрешности отдельных измерений. Распределение Гаусса. Доверительный интервал и доверительная вероятность. Понятие о генеральной и выборочной дисперсии. Распределение Стьюдента. Погрешности серии измерений. Выбор числа измерений. Погрешности косвенных измерений

#### Тема 3. Основы теории подобия и анализа размерностей

Краткое содержание темы: Основные правила моделирования. Третья теорема подобия (теорема Кирпичева–Гухмана). Понятие о критериях подобия, их роль в исследовании физических процессов. Подобие явлений и систем. Метод анализа размерностей. Основные и производные единиц измерений, система единиц измерений. Размерность физических величин, принцип ковариантности. П-теорема (теорема Бэкингема–Федермана). Определяющие и определяемые критерии подобия. Примеры использования критериев подобия при решении конкретных задач (колебания математического маятника, задача об атомном взрыве). Алгоритмы получения критериев подобия. Алгебраический метод Рэлея. Метод анализа дифференциальных уравнений. Понятие о критериальных уравнениях. Основные критерии подобия при исследовании систем.

#### **Тема 4.** Элементы теории планирования эксперимента

Краткое содержание темы: Определение интервала между экспериментальными данными. Порядок проведения эксперимента. Однофакторные эксперименты. Многофакторные эксперименты. Основные понятия теории планирования эксперимента.

Объект исследования, его представление в виде «черного ящика». Виды входных и выходных переменных. Понятие факторов, факторное пространство. Выходные показатели, характеристика исследуемых свойств или качеств – отклик, функция отклика, поверхность отклика. Эксперимент как система операций, воздействий и (или) наблюдений, направленных на получение информации об объекте в процессе испытаний. Опыт как отдельная элементарная часть эксперимента. План эксперимента – совокупность данных, определяющих число, условия и порядок проведения опытов. Планирование эксперимента как совокупность действий, направленных на разработку стратегии экспериментальных исследований от начальных до заключительных этапов изучения объекта (от получения априорной информации до создания работоспособной математической модели или определения оптимальных условий). Точка плана – упорядоченная совокупность численных значений факторов, соответствующая условиям проведения опытов. Шаг варьирования факторов, нормирование значений факторов. Задание плана эксперимента. Основные принципы планирования эксперимента, обеспечивающие получение максимума необходимой информации при минимуме опытов: отказ от полного перебора возможных входных состояний; принцип последовательного планирования; принцип сопоставимости с «шумом»; принцип рандомизации; принцип оптимальности планирования.

#### **Тема 5.** Аппроксимация опытных данных

Краткое содержание темы: Понятие об аппроксимации и ее цели. Графический анализ данных. Аппроксимация линейной зависимости. Метод выравнивания для нелинейных зависимостей. Примеры аппроксимации для степенной, показательной, гиперболической, параболической зависимостей. Определение параметров эмпирических формул. Метод наименьших квадратов. Оценка степени адекватности экспериментальных зависимостей. Линейный регрессионный анализ. Линейная регрессия для одной переменной. Множественная линейная регрессия. Корреляционный анализ. Коэффициент линейной корреляции двух величин. Множественная линейная корреляция.

#### Тема 6. Динамические измерения

Краткое содержание темы: Понятие о динамических измерениях. Типовая схема измерений. Классификация и характеристики сигналов. Передаточные характеристики измерительной системы. Описание передаточных характеристик переходными функциями. Типовые сигналы. Передаточные функции и частотные характеристики. Амплитудно-частотная и фазо-частотная характеристики. Взаимосвязь способов описания динамических свойств измерительных систем. Динамические свойства основных измерительных систем (системы первого и второго порядка). Динамические погрешности измерений. Расчет динамических погрешностей измерений. Приближенная оценка динамических характеристик. Анализ динамических характеристик исследуемой системы или процесса. Согласование характеристик измерительной системы и процесса. Динамические характеристики некоторых распространенных средств измерений (термопары, датчики давления и усилия, регистрирующие приборы).

#### Тема 7. Обратные задачи в теории эксперимента

Краткое содержание темы: Прямые и обратные задачи математической физики. Роль обратных задач в теории эксперимента. Примеры обратных задач при исследовании процессов и систем. Общая характеристика обратных задач математической физики. Понятие корректности по Адамару. Численные методы решения обратных задач (прямые методы, методы оптимизации, технология прямого поиска). Основные этапы решения обратных задач теплообмена. Обратные задачи химической кинетики в задачах зажигания конденсированных веществ. Алгоритм идентификации тепло— и массообменных процессов. Обратные задачи оптики аэрозолей. Основные понятия оптики аэрозолей.

Дисперсные характеристики аэрозольных частиц. Методы измерения функции распределения (метод спектральной прозрачности, метод малых углов индикатрисы рассеяния, метод полной индикатрисы). Методы измерения средних размеров и концентрации частиц. Измерение пространственного распределения плотности среды (уравнение Абеля).

#### Тема 8. Методы и средства измерения величин в исследовании систем

Краткое содержание темы: Основные характеристики РТС. Характеристики пневмо— и гидроприводов РТС. Измеряемые параметры при исследовании систем. Методы и датчики измерения перемещений. Датчик давления. Методы измерения температур. Основные типы и характеристики термопар. Оптические методы измерения температуры. Измерение усилий и тяги. Методы измерения скорости потока. Методы визуализации. Спектрофотометрические методы. Лазерное доплеровское измерение скорости.

#### 9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, выполнения контрольных заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

#### 10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в девятом семестре проводится в устной форме. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

#### 11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» <a href="https://lms.tsu.ru/course/view.php?id=22465">https://lms.tsu.ru/course/view.php?id=22465</a>
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (<a href="https://www.tsu.ru/sveden/education/eduop/">https://www.tsu.ru/sveden/education/eduop/</a>).
  - в) План практических занятий по дисциплине.
  - г) Методические указания по организации самостоятельной работы студентов.

#### 12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Налимов В.В. Теория эксперимента. М.: Наука, 1971. 207 с.
- Архипов В.А. Физико–химические основы процессов тепломассообмена: Учебн. пособие. Томск: Изд-во Том. политехн. ун-та, 2015. 199 с.
- Архипов В.А., Астахов А.Л. Методика экспериментального исследования диспергирования жидкости эжекционными форсунками. // Труды Томского государственного университета. Т. 296. Сер. Физико-математическая: Актуальные проблемы современной механики сплошных сред и небесной механики / под. ред. М.Ю. Орлова. Томск. 2015. С. 119-122.
- Архипов В.А., Васенин И.М., Усанина А.С., Шрагер Г.Р. Динамическое взаимодействие частиц дисперсной фазы в гетерогенных потоках. Томск: Издательский Дом Томского государственного университета, 2019. 328 с.

- б) дополнительная литература:
- Финни Л. Введение в теорию планирования экспериментов. М.: Наука, 1970. 287 с.
- Хартман К. Планирование эксперимента в исследовании технологических процессов / К. Хартман, В. Лецкий, В. Шифер и др. М: Мир, 1977. 557 с.
  - Шенк X. Теория инженерного эксперимента. М.: Мир, 1972. 381 с.
- Седов Л.И. Методы подобия и размерности в механике. М.: Наука, 1977. 440
  с.
- Кутателадзе С.С. Анализ подобия и физические модели. Новосибирск: Изд-во СО РАН, 1986. 290 с.
- Зайдель А.Н. Погрешности измерений физических величин. Л.: Наука, 1985. 112 с.
- Грановский В.А. Динамические измерения. Основы метрологического обеспечения. Л.: Энергоатомиздат, 1984. 224 с.
- Измерения в промышленности. Справочное издание. В 3-х кн. Кн. 1.
  Теоретические основы. М.: Металлургия, 1990. 492 с.
- Хальд А. Математическая статистика с техническими приложениями. М.: ИЛ, 1956. 664 с.
- Пустыльник Е.И. Статистические методы анализа и обработки наблюдений. М.: Физматгиз, 1968. 288 с.
- Кассандрова О.Н., Лебедев В.В. Обработка результатов наблюдений. М.: Наука,  $1970.-104~\mathrm{c}.$
- Химмельблау Д. Анализ процессов статистическими методами. М.: Мир, 1973. 957 с.
- Лавренчик В.Н. Постановка физического эксперимента и статистическая обработка его результатов: Учебное пособие для вузов. М.: Энергоатомиздат, 1986. 272 с.
- Архипов В.А. Основы теории инженерно-физического эксперимента: учебное пособие / В.А. Архипов, А.П. Березиков. Томск: Изд-во Томского политех. ун-та, 2008. 206 с.
- Баренблатт Г.И. Подобие, автомодельность, промежуточная асимптотика. Л.: Гидрометеоиздат, 1982. —255 с.
- Алифанов О.М. Идентификация процессов теплообмена летательных аппаратов (Введение в теорию обратных задач теплообмена). М.: Машиностроение, 1979. 216 с.
- Архипов В.А. Лазерные методы диагностики гетерогенных потоков: Учебное пособие. Томск: Изд-во Том. ун-та, 1987. 140 с.
- Шифрин К.С. Обратные задачи теории рассеяния и распространения излучения / Теоретические и прикладные проблемы рассеяния света. Минск: Наука и техника, 1971. С. 228–244.
- Архипов В.А., Титов С.С., Мецлер Э.А., Павленко А.А. Экспериментальная установка определения среднего объемно-поверхностного диаметра частиц дисперсных сред. // Ползуновский вестник. Барнаул. 2015. Т. 2, № 4. С. 47-51.
- Архипов В.А., Усанина А.С. Движение частиц дисперсной фазы в дисперсионной среде: Учебное пособие. Томск: Изд-во Том. ун-та, 2014. 252 с.
- Архипов В.А., Трофимов В.Ф., Жарова И.К. Диагностика дисперсного состава жидкокапельных аэрозолей методом малоуглового рассеяния. // Оптика атмосферы и океана. -2014. -T. 27, № 12. -C. 1102-1106.
- Архипов В.А., Басалаев С.А., Кузнецов В.Т., Порязов В.А., Федорычев А.В. Моделирование процессов зажигания и горения борсодержащих твердых топлив // Физика горения и взрыва. 2021. Т. 57. № 3. С. 58-64.
  - в) ресурсы сети Интернет:

- Интернет-ресурсы по работе с программой T–Flex Техно–про, APM WinMachine (www.apm.ru).
  - http://www.maik.ru Журнал «Приборы и техника эксперимента».
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

#### 13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
  - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
  - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ <a href="http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system">http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system</a>
- Электронная библиотека (репозиторий) ТГУ –
  http://vital.lib.tsu.ru/vital/access/manager/Index
  - ЭБС Лань <a href="http://e.lanbook.com/">http://e.lanbook.com/</a>
  - ЭБС Консультант студента <a href="http://www.studentlibrary.ru/">http://www.studentlibrary.ru/</a>
  - Образовательная платформа Юрайт https://urait.ru/
  - ЭБС ZNANIUM.com https://znanium.com/
  - 9EC IPRbooks <a href="http://www.iprbookshop.ru/">http://www.iprbookshop.ru/</a>

#### 14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий практического типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

#### 15. Информация о разработчиках

Архипов Владимир Афанасьевич, д.ф.-м.н., профессор, Физико-технический факультет Томского государственного университета, профессор кафедры прикладной газовой динамики и горения

Усанина Анна Сергеевна, к.ф.-м.н., доцент, Физико-технический факультет Томского государственного университета, доцент кафедры динамики полета