Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Компьютерные сети

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-15 Способен администрировать компьютерные сети и контролировать корректность их функционирования.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-15.1 Понимает общие принципы функционирования компьютерных сетей, протоколы канального, сетевого, транспортного и прикладного уровней модели взаимодействия открытых систем

ИОПК-15.2 Осуществляет установку и настройку параметров активных сетевых устройств, настройку программного обеспечения сетевых устройств, установку специальных средств управления сетевыми устройствами

ИОПК-15.3 Производит инвентаризацию параметров и функциональных схем работы сетевых устройств, оценку эффективности конфигурации сетевых устройств с точки зрения производительности сети

ИОПК-15.4 Производит оценку производительности сетевых устройств и программного обеспечения, контроль использования сетевых устройств и программного обеспечения, управление средствами тарификации сетевых ресурсов, поиск и диагностику ошибок сетевых устройств и программного обеспечения

2. Задачи освоения дисциплины

- Освоить принципы организации распределенных компьютерных сетей, сетей уровня абонентского доступа, облачных вычислений и сервисов.
- Научиться применять знания о компьютерных сетях для создания единого информационного пространства людей, вещей и приложений, механизмов коммуникаций в индустрии обработки информации, электронном документообороте, автоматизации деловых и технологических процессов в промышленности, здравоохранении, образовании и пр.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в «Модуль «Компьютерные науки».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Шестой семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты освоения принципов алгоритмизации, основ организации вычислительных систем и обучения по следующим дисциплинам: Архитектура вычислительных систем, Операционные системы.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

-лекции: 48 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основы компьютерных сетей

Эволюция вычислительных систем. Сетевые ресурсы. Методы коммутации в сетях передачи данных (СПД). Сравнение методов коммутации. Классификация СПД. Сети с маршрутизацией и селекцией информации. Концептуальные требования к архитектуре вычислительной сети. Понятие протокола. Принципы управления распределенными вычислительными системами. Стандартизующие органы в области сетевых технологий. Семиуровневая модель архитектуры вычислительных сетей МОС (эталонная модель взаимодействия открытых систем — ВОС). Концепция служб, интерфейсов и протоколов модели ВОС. Архитектура глобальной сети Internet. Сравнение архитектур. Преобразование потока данных управляющими протоколами при передаче по сети (протокольные блоки данных и инкапсуляция).

Тема 2. Технологии физического уровня

Функции и структура физического канала связи. Состав аппаратуры линии связи. Стандарты на данный уровень протоколов. Выделенные и коммутируемые линии связи. Характеристики линии связи. Аналоговые и цифровые каналы связи. Методы аналоговой модуляции. Модуляционная И информационная скорость. Методы цифрового Требования к методам цифрового кодирования. Потенциальные и кодирования. логического импульсные коды. Методы кодирования (избыточные скрэмблирование). Дискретная аналоговых модуляция сигналов. Частотное (де)мультиплексирование аналоговых каналов. Временное (де)мультиплексирование цифровых каналов. Плезиохронная цифровая иерархия (РДН). Синхронная цифровая иерархия (SDH).

Тема 3. Управление информационным каналом (звеном передачи данных)

Бит- и байт-ориентированные протоколы. Методы выделения кадра в потоке бит/байт (фазирование). Методы обеспечения прозрачности. Протокол HDLC. Формат кадра. Типы кадров. Управляющие команды и ответы. Старт-стопные и конвейерные протоколы управления информационным каналом. Понятие окна. Групповой и селективный режимы повторной передачи искаженных кадров. Полудуплексная (нормальная/синхронная) процедура управления звеном передачи данных. Дуплексная (асинхронная) процедура управления звеном передачи данных. Анализ влияния искажений информационных кадров в прямом канале и подтверждений в обратном канале на быстродействие старт-стопной, нормальной и асинхронной процедур управления звеном передачи данных. Методы выбора протокольных параметров (длина кадра, размер окна). Анализ влияния блокировок ограниченной буферной памяти транзитного узлаполучателя на пропускную способность двухзвенного фрагмента сети, управляемого старт-стопным протоколом. Протокол PPP. Технологии ISDN, Frame Relay, ATM. Адресация абонентов глобальной сети.

Тема 4. Технологии построения локальных сетей

Методы совместного использования разделяемой среды передачи данных. Стандартизуемые методы доступа к разделяемой среде. Кольцо с тактированным доступом. Кольцо с маркерным доступом. Шина с маркерным доступом. Шина со случайным доступом. Анализ влияния коллизий конкурирующих абонентов на быстродействие случайного метода доступа. Технологии Ethernet, Fast Ethernet, Gigabit Ethernet. Беспроводные локальные сети. Процедурные особенности метода доступа WiFi. Анализ индивидуального быстродействия абонента беспроводной сети. «Эффект захвата» разделяемой беспроводной среды одним из конкурирующих абонентов. Логическая структуризация сети с помощью коммутаторов. Устройства структуризации. Организация коммутаторов локальной сети. Коммутация «на лету», с частичной и полной

буферизацией. Виды фильтрации кадров. Варианты управления потоком кадров в полудуплексном и дуплексном режимах работы портов коммутатора. Техническая реализация коммутаторов на основе коммутационной матрицы, многовходовой разделяемой памяти, общей шины. Алгоритм покрывающего дерева. Трансляция протоколов канального уровня. Виртуальные локальные сети. Построение виртуальных локальных сетей на основе группировки портов коммутатора и на основе группировки МАС-адресов абонентов.

Тема 5. Уровень сетевого протокола

Методы адресации сетевых объектов на различных уровнях иерархической модели Физическая, сетевая и логическая адресация. Взаимное отображение разно уровневых адресов. Групповые и многопунктовые адреса. Широковещание. Плоские и иерархические адреса. Классы сетевых ІР-адресов версии 4. Применение масок при ІРадресации. Доменные имена. Протокол отображения ІР-адресов на физические (локальные) адреса в локальных и глобальных сетях (ARP). Протокол динамического назначения (выделения) IP-адресов узлам сети (DHCP). Методы экономии адресного пространства и решения проблемы дефицита адресов. Бесклассовая маршрутизация. Автономные адреса и их повторное использование. Трансляция сетевых адресов и портов (NAT/PAT – механизм отображения множества автономных IP-адресов на один реальный IP-адрес). Масштабируемая система IP-адресации версии 6. Сетевой протокол IPv4. Формат пакета. Методы маршрутизации. Стратегия принятия решения, место принятия решения и информация для принятия решения о изменении маршрута. Цена пути. Фиксированная и адаптивная маршрутизация. Централизованные, распределенные и иерархические адаптивные алгоритмы. Изолированные и кооперированные алгоритмы. Основные требования к алгоритму маршрутизации. Дистанционно-векторный алгоритм маршрутизации АРПА1 (DVA). Сходимость и основные недостатки алгоритма (зацикливание и колебательные явления). Методы борьбы с ложными маршрутами. Алгоритм маршрутизации на основе состояния линий связи АРПА2 (LSA). Протоколы маршрутизации RIP и OSPF. Протокол ICMP. Особенности протокола IPv6. Сети дейтаграммного и виртуального сервиса. Виды блокировок буферной памяти узлов сети (прямая; косвенная; сборки; вложенных квитанций; блокировки, обусловленные приоритетностью потоков; статистическое блокирование) и методы предупреждения блокировок. Стратегии распределения буферной памяти узла коммутации между выходными направлениями передачи. Методы управления сетевыми потоками. Программно-определяемые сети (SDN – централизованный механизм маршрутизации). Протокол OpenFlow. Протокол автоматического распознавания связей BDDP. Конвейер таблиц продвижения. Проблемы OpenFlow. Виртуализация сетевых функций (NFV). Мобильные телекоммуникационные сети. Мобильный IPv4 и IPv6. Новое радио (New Radio).

Тема 6. Уровень транспортного протокола

Транспортные протоколы, ориентированные на соединение, протоколы без соединения. Идентификация (адресация) прикладных процессов и информационных потоков к ним и от них портами. Мультиплексирование потоков данных от различных приложений. Демультиплексирование сетевого потока между абонентскими прикладными службами. Формат сегмента сообщения. Команды транспортного протокола. Процедуры управления сквозной транспортировкой данных. Механизм управления потоком между корреспондирующими абонентами (прикладными процессами) на основе механизма скользящего окна. Протокол ТСР. Анализ задержки мульти пакетного сообщения в многозвенном детерминированном тракте передачи данных. Конвейерный эффект. Задержка сообщения в неоднородном виртуальном канале. Оптимальное разбиение сообщения на фрагменты. Оптимизация размера фрагмента в сети с учетом искажений в

каналах связи. Влияние размера окна и длительности сквозного тайм-аута на среднюю задержку пакета в виртуальном канале. Задержка сообщения в нагруженном тракте передачи данных (однородный и неоднородный по длинам сегментов трафик). Факторы, определяющие быстродействие транспортного соединения. Методы прямой коррекции ошибок на уровне транспортного протокола и их влияние на реальное быстродействие транспортного соединения в условиях высокой интенсивности помех. Влияние конкуренции за сетевые ресурсы соперничающих абонентов на индивидуальное быстродействие транспортных соединений.

Тема 7. Структура прикладного уровня и совместное функционирование протоколов верхних уровней

Протокол сеансового уровня. Фазы и услуги сеансовой службы с установлением соединения. Сеансовая служба без установления соединения. Представительный протокол. Услуги представительной службы (преобразование форматов, сжатие информации, средства обеспечения безопасности). Преобразование представлений прикладным процессам через локальные и стандартные форматы. Протоколы прикладного между взаимодействующими Обеспечение интерфейса приложениями. Протоколы аутентификации. Служба управления ассоциацией прикладных объектов. Служба управления выполнением, завершением и восстановлением прикладных процессов. Протокол передачи, доступа и управления файлом. Модель виртуального файлохранилища. Протокол виртуального терминала. Модель среды виртуального терминала. Протокол передачи и обработки заданий. Протокол приемо-передачи электронной почты. Понятие сокета. Библиотека Winsock на основе сокетной парадигме Berkley Sockets. Библиотека Winsock 2.0. Протокол и адресация DNS. Сервис Telnet. Протокол и сервис FTP. Почтовый сервис и протоколы POP3, SMTP и IMAP. Формат почтовых сообщений. Язык HTML, каскадные стили. Язык SVG. Язык XML, стили XSL. CGI скрипты. Протокол HTTP. Язык Java. Язык Perl. Язык PHP. ASP.NET. Сетевая безопасность. Пиринговые сети. Введение в параллельные вычисления. Модель параллельного вычислителя. Существующие параллельные архитектуры: MPP, SMP, NUMA, PVP, кластерные системы, сети с разнородными вычислителями. Модели параллельного программирования (UMA, NUMA). Методологический подход к созданию параллельных алгоритмов: декомпозиция, связь, объединение. Библиотеки и технологии для параллельного программирования: OpenMP, MPI. Подходы для автоматического распараллеливания. Облачные и туманные вычисления. Модели облачных вычислений. Особенности организации приложений интернета вещей.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, проверки теоретических вопросов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в шестом семестре проводится в письменной форме по билетам. Экзаменационный билет включает теоретические вопросы, оценивающие достижение запланированных индикаторов, решение практических задач и интерпретацию полученных результатов. Продолжительность экзамена 1,5 часа.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»:

«отлично» — студент имеет четкое представление о функциональности и специфике протоколов; умеет мотивировать выбор стека протоколов, их параметров, программного обеспечения поддержки протоколов. Уверенно владеет первичными навыками сетевого администратора и разработчика распределенных приложений.

Не имеет неудовлетворительных оценок за контрольные работы, средняя (округленная) оценка за контрольные работы – «отлично»;

«хорошо» – студент имеет общее представление о функциональности и специфике протоколов; умеет выполнять выбор стека протоколов, их параметров, программного обеспечения поддержки протоколов. Владеет первичными навыками сетевого администратора и разработчика распределенных приложений.

Не имеет неудовлетворительных оценок за контрольные работы, средняя (округленная) оценка за контрольные работы – «хорошо»;

«удовлетворительно» — студент имеет слабое представление о функциональности и специфике протоколов; неуверенно выполняет выбор стека протоколов, их параметров, программного обеспечения поддержки протоколов. Неуверенно владеет первичными навыками сетевого администратора и разработчика распределенных приложений.

Не имеет неудовлетворительных оценок за контрольные работы, средняя (округленная) оценка за контрольные работы – «удовлетворительно»;

«неудовлетворительно» — студент не имеет представление о функциональности и специфике протоколов; не может выполнять выбор стека протоколов, их параметров, программного обеспечения поддержки протоколов. Не владеет первичными навыками сетевого администратора и разработчика распределенных приложений.

Сдал хотя бы одну контрольную работу на «неудовлетворительно».

Во время экзамена студент может повысить свою оценку, сдав заново соответствующую контрольную работу, при условии выполнения остальных требований к оценке.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в среде электронного обучения IDO https://lms.tsu.ru/course/view.php?id=8399
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
- в) Методические указания по организации самостоятельной работы студентов описаны в электронном курсе.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. СПб.: Питер, 2020. 1008 с.
- Сущенко С.П. Математические модели компьютерных сетей. Томск: Издательский Дом Томского государственного университета, 2017. 272 с.
 - б) дополнительная литература:
- Михеев П.А., Сущенко С.П. Математические модели сетей уровня доступа. Новосибирск: Наука, 2015. — 232 с.
- Гольдштейн Б.С. Инфокоммуникационные сети и системы. СПб.: БХВ-Петербург, 2019. 208 с.

в) ресурсы сети Интернет:

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ –
 http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных:
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (ЕМИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатории, оборудованные компьютерами, коммутаторами, маршрутизаторами, беспроводными точками доступа WiFi.

Аудитории для проведения занятий лекционного типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Сущенко Сергей Петрович, д-р техн. наук, профессор, кафедра прикладной информатики ИПМКН ТГУ, заведующий кафедрой.