Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт экономики и менеджмента

Рабочая программа дисциплины

Искусственный интеллект в экономике

по направлению подготовки

38.04.01 Экономика

Направленность (профиль) подготовки: **Анализ данных в экономике**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО:

Руководитель ОП

_____ Н.А. Скрыльникова

Председатель УМК

М.В. Герман

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ПК-2 Способен разрабатывать стратегии управления изменениями в организации.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК 2.4 Определяет основные аспекты организации, которые могут быть затронуты стратегическими изменениями.

2. Задачи освоения дисциплины

- получить систематизированное представление о концепциях, основных направлениях исследований, принципах и приложениях искусственного интеллекта (ИИ);
- сформировать навыки по использованию технологий ИИ для решения экономических задач.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Эконометрика», «Руthon и R для анализа данных», «Большие данные и аналитика», «Управление проектами».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

- -лекции: 18 ч.
- -практические занятия: 28 ч.

в том числе практическая подготовка: 28 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основы концепции искусственного интеллекта

Понятие ИИ. История развития ИИ. Типы ИИ. Области применения ИИ.

Этика в сфере ИИ. Принципы этики и правила поведения акторов ИИ. Доверенный ИИ. Компоненты и свойства доверенного ИИ. Уровни доверия и уровни архитектуры в системах ИИ.

Риски использования ИИ. Структура менеджмента рисков ИИ. Критерии, оценка и идентификация рисков ИИ. Воздействие на риски. Технологическая сингулярность и её последствия.

Перспективы развития ИИ в России и мире.

Тема 2. Принципы искусственного интеллекта

Машинное обучение. Структура машинного обучения. Типы алгоритмов машинного обучения. Какие задачи решает машинное обучение. Машинное обучение в экономике.

Понятие нейросети. Виды нейронных сетей. Задачи нейронных сетей. Принцип работы нейронных сетей. Сферы применения.

Глубокое обучение, принцип работы. Преимущества глубокого обучения. Разница между машинным и глубоким обучением.

Тема 3. Решение экономических задач методами искусственного интеллекта. Использование искусственного интеллекта в различных сферах экономики

Общие способы решения задач. Основные выводы логических задач. Методы и алгоритмы решения экономических задач. ИИ в принятии решений, определяющих основные аспекты организации, которые могут быть затронуты стратегическими изменениями.

Использование ИИ в экономике (в электроэнергетике, в производственной сфере, в банках, в сфере инвестиций, в ритейле, в сельском хозяйстве, в борьбе с мошенничеством и др.).

Тема 4. Компьютерные атаки на искусственный интеллект. Способы защиты

Атаки на ИИ. Обзор реализованных атак. Классификация атак. Методы противодействия атакам. Защита данных. Федеративное обучение. Гомоморфное шифрование.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, деловых игр по темам, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Первая часть представляет собой тест из 10 вопросов:

- 5 вопросов, проверяющих ИУК-1.1. Ответы на вопросы даются путем выбора из списка предложенных;
- 5 вопросов, проверяющих ИОПК-2.2. Ответы на вопросы даются путем заполнения пропусков в высказываниях.

Вторая часть содержит 1 теоретический вопрос, проверяющий ИПК-3.3. Ответ на вопрос третьей части дается в развернутой форме.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично», если:

- правильно выполнена первая часть экзамена;
- полностью раскрыто содержание материала во второй части экзамена;
- материал изложен грамотным языком в определенной логической последовательности, точно используя специальную терминологию;
- самостоятельный ответ без наводящих вопросов преподавателя;
- уверенные ответы на второстепенные вопросы преподавателя.

Оценка «хорошо», если:

- ответы удовлетворяют требованиям на оценку «отлично», но при этом имеют недостатки:
 - о допущена одна ошибка в первой части экзамена;
 - о в изложении допущены небольшие пробелы, не исказившие содержание материала;
 - о допущены недочеты при освещении второстепенных вопросов, легко исправленные по замечанию преподавателя.

Оценка «удовлетворительно», если:

- допущено не более трех неверных ответов в первой части экзамена;
- неполно или непоследовательно раскрыт материал, но показано общее понимание вопроса;
- имелись затруднения в определении понятий или ошибки в использовании специальной терминологии, но исправленные после нескольких наводящих вопросов преподавателя.

Оценка «неудовлетворительно», если:

- не справился с первой частью экзамена;
- обнаружено незнание и непонимание большей или наиболее важной части учебного материала;
- отказ от ответа без объяснения причин.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/enrol/index.php?id=33472
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

Пример тестовых заданий, проверяющих ИУК-1.1:

- 1. Какой из приведенных терминов характеризует ИИ, способный к эмоциям и являющийся подобным человеческому интеллекту?
 - а) Слабый ИИ
 - b) Развитый ИИ
 - с) Сильный ИИ
 - d) Умный ИИ
 - 2. Что из перечисленного не является ИИ?
 - а) Компьютерное зрение
 - b) Экспертная система
 - с) Обработка текста на естественном языке
 - 3. Что является моделью для ИИ?
 - а) Молекула
 - b) Процессы головного мозга
 - с) Информационно-телекоммуникационная сеть
 - d) Телефонная связь
- 4. Уверенность потребителя, организаций, ответственных за регулирование вопросов создания и применения системы ИИ, и иных заинтересованных сторон в том, что система способна выполнять возложенные на нее задачи с требуемым качеством это?
 - а) Доверие к системе искусственного интеллекта
 - b) Доверенная система искусственного интеллекта
 - с) Объяснимость искусственного интеллекта

- d) Прозрачная система искусственного интеллекта
- 5. Атакующий создает входные данные для действующей системы, и при обработке выдается не тот результат, на который рассчитывали создатели системы: ошибочная идентификация спама, неверная интерпретация высказываний или распознавание объекта на изображении это?
 - а) Отравление модели
 - b) Состязательные атаки
 - с) Манипуляции с выходными данными
 - d) Манипуляции с обучающими данными (атаки отравления)

T YOUTH AA
Пример тестовых заданий, проверяющих ИОПК-2.2:
1. Уровень системы искусственного интеллекта определяет, какой
объем информации о фактическом поведении системы доступен организации.
2 – метод анализа данных, построенный на идее о возможности алгоритмов обучаться, анализируя данные, выводя из них определенные закономерности и принимать решение на основании сделанных выводов с минимальным вовлечением человека.
3. Круг лиц в сфере искусственного интеллекта называемый, принимающих участие в жизненном цикле СИИ, при его реализации на территории РФ или в отношении лиц, находящихся на территории РФ, включая предоставление товаров и оказание услуг.
4. Доверие ИИ на физическом уровне основывается на комбинации требований к,и
5 – комплекс технологических решений, позволяющий имитировать когнитивные функции человека и получать при выполнении конкретных задач результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека

Примерный перечень теоретических вопросов, проверяющих ИПК-3.3:

- 1. Понятие искусственного интеллекта. Его роль в современной экономике.
- 2. Области применения искусственного интеллекта. Классификация искусственного интеллекта.
- 3. Интеллектуальный интерфейс. Понятие и особенности.
- 4. История развития искусственного интеллекта по областям.
- 5. Направления исследований искусственного интеллекта.
- 6. Доверенный искусственный интеллект.
- 7. Машинное обучение. Типы машинного обучения.
- 8. Искусственный интеллект в экономике. Искусственные нейронные сети. Применение и развитие систем.
- 9. Методы решения задач в искусственном интеллекте.
- 10. Понятие логики в искусственном интеллекте. Методы доказательства в логике.
- 11. Оценка уровня искусственною интеллекта. Тест Тьюринга и пути решения.
- 12. Понятие нейронной сети. Обучение нейронных сетей.
- 13. Риски использования искусственного интеллекта.
- 14. Виды нейронных сетей. Генетические алгоритмы.
- 15. Однослойные и многослойные нейронные сети. Преимущество и особенности.
- 16. Понятие регрессии. Создание регрессора.

- 17. Обучение нейронной сети без учителя. Особенности, преимущества и недостатки.
- 18. Понятие смешанных гауссовских моделей. Создание классификаторов.
- 19. Обучение нейронной сети с подкреплением. Особенности и преимущества подхода.
- 20. Экспертные системы в экономике. Виды и роль в современной экономике. Преимущества и особенности.
- 21. Сверточные нейронные сети. Архитектура, особенности.
- 22. Искусственный интеллект в экономике. Методы визуализации полученных результатов.
- в) План семинарских / практических занятий по дисциплине.

Пример практических заданий:

Практическая работа №1. Классификатор на основе перцептрона

Цель: разработать нейронную сеть для классификации данных на Python.

- 1. Установить с официального сайта или репозитория Python на целевую ОС.
- 2. Установить библиотеки neurolab, numpy, matplotlib, perceptron для Python.
- 3. Создать новый файл Python.
- 4. Импортировать файлы и библиотеки (numpy, matplotlib, neurolab).
- 5. Загрузить входные данные из текстового файла data_lab1.txt.
- 6. Разделить текст на точки данных и метки.
- 7. Построить график точек данных.
- 8. Определить максимальное и минимальное значения, которые могут достигаться в каждом измерении.
- 9. Задать в выходном слое количество нейронов.
- 10. Определить перцептрон с двумя входными нейронами.
- 11. Обучить перцептрон с помощью тренировочных данных.
- 12. Отобразить график процесса обучения, используя метрику ошибки.
- 13. Оформить отчет с ходом ваших действий и результатами.

Практическая работа №2. Многослойной нейронная сеть

Цель: построить многослойную нейронную сеть с высокой точностью.

Задание: Создать нейронную сеть, которая будет иметь более одного слоя для извлечения базовых закономерностей, существующих среди тестовых данных.

- 1. Создать новый файл Python.
- 2. Импортировать библиотеки (numpy, matplotlib, neurolab).
- 3. Сгенерировать данные, используя уравнение $y = 2x + x^2 + 3$.
- 4. Нормализовать полученные данные.
- 5. Сгенерировать тренировочные данные:
 - a) $\min \text{ val} = -20$
 - 6) max val = 20
 - B) num points = 150
 - Γ) x = np.linspace(min val, max val, num points)
 - д) y = 2*x + np.square(x) + 3
 - e) y = np.linalg.norm(y)

- 6. Переформировать приведенные выше переменные для создания тренировочного набора данных.
 - a) data = x.reshape(num points, 1)
 - δ) labels = y.reshape(num points, 1)
- 7. Построить график входных данных.
- 8. Определить многослойную нейронную сеть с двумя скрытыми слоями. Создать 20 нейронов в первом слое и 12 нейронов во втором слое. Задача заключается в предсказании одного значения, поэтому выходной слой будет содержать один нейрон.
- 9. Установить метод градиентного спуска в качестве обучающего алгоритма.
- 10. Обучить нейронную сеть, используя сгенерированный ранее тренировочный набор данных.
- 11. Запустить нейронную сеть для тренировочных точек данных.
- 12. Построить график продвижения процесса обучения.
- 13. Построить график предсказанных результатов.
- 14. Оформить отчет с ходом ваших действий и результатами.

Практическая работа №3. Нейронная сеть с обучением

Цель: разработать нейронную сеть и обучить с подкреплением.

- *Для выполнения задания необходима версия Python 3.9.7
- 1. Создать проект Python в Visual Studio.
- 2. Установить библиотеки gym, pyglet==1.5.27, pygame для Python через управление пакетами среды.
- 3. Импортировать в проект библиотеки (argparse, gym).
- 4. Определить функцию для анализа входных аргументов.
- 5. Определить основную функцию и проанализируйте входные аргументы.
- 6. Создать отображение входных аргументов на имена окружений, определенных в пакете OpenAI Gym.
- 7. Создать окружение на основании входного аргумента и сбросить его состояние.
- 8. Итерировать 2000 раз, предпринимая действие на каждом шаге.
- 9. В стандартном средстве запуска Python в режиме отладки указать аргумент сценария --input-env cartpole.
- 10. Запустить проект и описать результат.
- 11. Запустить проект с аргументами сценария (mountaincar, lake). Описать результат.
- 12. Оформить отчет с ходом ваших действий и результатами.

Практическая работа №4. Линейная регрессия с глубоким обучением

Цель: создать линейную регрессионную модель с использованием нейронных сетей.

- 1. Создать проект Python в Visual Studio.
- 2. Обновить пакет рір через управление пакетами среды.

- 3. Установить библиотеку tensorflow==2.10.1 для Python через управление пакетами среды.
- 4. Импортировать в проект библиотеки (numpy, matplotlib, tensorflow).
- 5. Определить количество генерируемых данных.
- 6. Определить параметры, которые будут применяться для генерации данных. Использовать модель прямой линии: y = mx + c
- 7. Сгенерировать 'х'.
- 8. Сгенерировать шум, варьирующий данные.
- 9. Вычислить значение у с помощью уравнения.
 - 1. y = m*x + c + noise
 - 2. data.append([x, y])
- 10. Разделить данные на входные и выходные переменные.
- 11. Построить график сгенерированных данных.
- 12. Сгенерировать веса и смещения для перцептрона. Для весов использовать генератор случайных чисел с равномерным законом распределения, а смещения задайте равными нулю.
- 13. Определить уравнения для 'у', используя переменные TensorFlow

$$y = W * x data + b$$

- 14. Определить функцию потерь, которая будет использоваться в процессе обучения. Оптимизатор будет пытаться минимизировать ее значение.
- 15. Определить оптимизатор, использующий метод градиентного спуска, и передать ему функцию потерь.
- 16. Инициализировать все созданные переменные.
- 17. Запустить сеанс работы с TensorFlow с помощью инициализатора.
- 18. Запустить процесс обучения. Укажите 10 итераций.
- 19. Запустить сеанс.
- 20. Отобразить данные о продвижении процесса обучения. По мере увеличения количества выполненных итераций параметр потерь непрерывно снижается.
- Построить график сгенерированных данных и наложить на него предсказательную модель. В качестве модели используется прямая линия.
- 22. Построить график предсказанной выходной линии.
- 23. Задать параметры графика.
- 24. Оформить отчет с ходом ваших действий и результатами.
- г) Методические указания по организации самостоятельной работы студентов. Самостоятельная работа магистрантов включает в себя:
 - самостоятельную подготовку к занятиям по заявленным темам курса в соответствии с приведенными планом (содержание дисциплины) и литературой. Контроль выполнения производится на занятиях в блиц-опросах;
 - самостоятельную подготовку к дискуссиям;

• самостоятельную работу в аудитории при ответах на вопросы, и разборе практических ситуаций. Контроль выполнения осуществляется сразу же при оценке полученных результатов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Шумский С.А. Воспитание машин: новая история разума: Научно-популярная литература / С.А. Шумский Москва: ООО «Альпина нон-фикшн», 2021. 174 с. URL: https://znanium.com/catalog/document?id=387316.
- Коваленко А.В. Интеллектуальные информационные системы в экономике : учебное пособие / А.В. Коваленко, Е.В. Казаковцева 2-е изд. Москва : Ай Пи Ар Медиа, 2023. 250 с. URL: https://www.iprbookshop.ru/132412.html.
- Коваленко А.В. Искусственный интеллект в бизнесе: анализируем и применяем / А.В. Коваленко, Е.В. Казаковцева Москва, Алматы : Ай Пи Ар Медиа, EDP Hub (Идипи Хаб), 2023. 354 с. URL: https://www.iprbookshop.ru/130922.html.
- Баюк Д.А. Правовые и этические проблемы искусственного интеллекта: учебник для магистратуры / Д.А. Баюк, А.В. Попова Москва: Прометей, 2022. 300с. URL: https://www.iprbookshop.ru/125621.html.
- Матвеев М.Г. Модели и методы искусственного интеллекта. Применение в экономике / М.Г. Матвеев, А.С. Свиридов, Н.А. Алейникова Москва : Финансы и статистика, 2014.-446 с.
- Соснило А.И. Атлас искусственного интеллекта для бизнеса и власти : учебное пособие / А.И. Соснило Москва : Ай Пи Ар Медиа, 2022. 105 с. URL: https://www.iprbookshop.ru/122463.html.
- Орлов А.И. Искусственный интеллект: статистические методы анализа данных : учебник / А.И. Орлов Москва : Ай Пи Ар Медиа, 2022. 843 с. URL: https://www.iprbookshop.ru/117029.html.
- Орлов А.И. Искусственный интеллект: нечисловая статистика: учебник / А.И. Орлов Москва: Ай Пи Ар Медиа, 2022. 446 с. URL: https://www.iprbookshop.ru/117028.html.
- —Хрипунова М.Б. Экономика на Python : учебник / М.Б. Хрипунова, А.М. Губернаторов Москва : Прометей, 2021. 316 с. URL: https://www.iprbookshop.ru/125692.html.
- Бенгфорт Б. Прикладной анализ текстовых данных на Python : машинное обучение и создание приложений обработки естественного языка / Б. Бенгфорт, Р. Билбро, Т. Охеда СПб.: Питер, 2019. 368 с.
- Протодьяконов А.В. Алгоритмы Data Science и их практическая реализация на Python: учебное пособие / А.В. Протодьяконов, П.А. Пылов, В.Е. Садовников Москва, Вологда: Инфра-Инженерия, 2022. 392 с. URL: https://www.iprbookshop.ru/124000.html.

б) дополнительная литература:

- Андреева О.В. Основы алгоритмизации и программирования на языке Python: учебник / О.В. Андреева, О.И. Ремизова Москва: Издательский Дом МИСиС, 2022. 149 с. URL: https://www.iprbookshop.ru/129510.html.
- Мюллер А. Введение в машинное обучение с помощью Python : руководство для специалистов по работе с данными / А. Мюллер, С. Гвидро Москва : Диалектика, 2019. 472 с.
- Горбаченко В.И. Машинное обучение : учебное пособие / В.И. Горбаченко, К.Е. Савенков, М.А. Малахов Москва : Ай Пи Ар Медиа, 2023. URL: https://www.iprbookshop.ru/125886.html.

- Николенко С. Глубокое обучение : погружение в мир нейронных сетей / С. Николенко, А. Кадурин, Е. Архангельская Санкт-Петербург : Питер, 2019. 476 с.
- Берджесс Э. Искусственный интеллект для вашего бизнеса : практическое руководство / Э. Берджесс Москва : Интеллектуальная Литература, 2021. 232 с. URL: https://znanium.com/catalog/product/1842395.
- Дэвенпорт Т. Внедрение искусственного интеллекта в бизнес-практику: преимущества и сложности / Т. Дэвенпорт Москва : Альпина Паблишер, 2021. 316 с. URL: https://www.iprbookshop.ru/124593.html.
- Корячко В.П. Интеллектуальные системы и нечеткая логика : учебник / В.П. Корячко, М.А. Бакулева, В.И. Орешков Москва : Курс, 2020. 346 с.
- Бугл Р. Искусственный интеллект и экономика : Работа, богатство и благополучие в эпоху мыслящих машин : научно-популярное издание / Р. Бугл Москва : Альпина ПРО, 2023. URL: https://znanium.ru/catalog/product/2141006.
 - в) ресурсы сети Интернет:
 - ЭБС «Лань» https://e.lanbook.com;
 - Журнал «Эксперт» http://www.expert.ru;
- Общероссийская Сеть КонсультантПлюс Справочная правовая система http://www.consultant.ru;
 - ЭБС «Юрайт» https://urait.ru;
 - ЭБС «ZNANIUM» https://znanium.com;
 - 3FC «IPRbooks» http://www.iprbookshop.ru/;
 - Основы машинного обучения https://openedu.ru/course/hse/INTRML;
 - Введение в Python https://ru.hexlet.io/courses/python 101;
 - Программирование на Python https://stepik.org/course/67/promo.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Операционная система Windows 10-11:
- Microsoft Office Standart 2010 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office OneNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - Браузер Google Chrome/Opera/Firefox для работы в электронном курсе Moodle;
 - Свободно-распространяемый программный продукт Python, Visual Studio 2019;
 - Публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system;
 - Электронная библиотека (репозиторий) ТГУ -
- http://vital.lib.tsu.ru/vital/access/manager/Index;
 - ЭБС Лань http://e.lanbook.com/;
 - ЭБС Консультант студента http://www.studentlibrary.ru/;
 - Образовательная платформа «Юрайт» https://urait.ru/;
 - ЭБС «ZNANIUM» https://znanium.com/;
 - 3FC «IPRbooks» http://www.iprbookshop.ru/.

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Кочнев Захар Сергеевич, кандидат физико-математических наук, инженер II категории, отдел технического сопровождения федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет».