Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Теория нелинейных динамических систем

по направлению подготовки

15.04.03 Прикладная механика

Направленность (профиль) подготовки: Компьютерный инжиниринг конструкций, биомеханических систем и материалов

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП В.А. Скрипняк Е.С. Марченко

Председатель УМК В.А. Скрипняк

Томск - 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ПК-2 Способен самостоятельно выполнять научные исследования в области прикладной механики, решать сложные научно-технические задачи, которые для своего изучения требуют разработки и применения математических и компьютерных моделей, применения программных систем мультидисциплинарного анализа (САЕ-систем мирового уровня).
- ПК-4 Способен применять физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК 2.1 Знать: математические и компьютерные модели, программные системы мультидисциплинарного анализа (САЕ-системы мирового уровня), используемые для решения поставленных научно-технических задач
- ИПК 2.2 Уметь самостоятельно выполнять научные исследования в области прикладной механики, решать сложные научно-технические задачи, которые для своего изучения требуют разработки и применения математических и компьютерных моделей, применения программных систем мультидисциплинарного анализа (САЕ-систем мирового уровня)
- ИПК 2.3 Владеть навыками самостоятельного выполнения научных исследований в области прикладной механики, решения сложных научно-технических задач
- ИПК 4.1 Знать физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования, применяемые в процессе профессиональной деятельности
- ИПК 4.2 Уметь применять физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности
- ИПК 4.3 Владеть навыками применения физико-математического аппарата, теоретических, расчетных и экспериментальных методов исследования, методов математического и компьютерного моделирования в процессе профессиональной деятельности

2. Задачи освоения дисциплины

- Познакомить с теорией динамических систем и нелинейной динамикой в приложении к задачам физики живых систем;
- Познакомить с законами эволюции природных, экономических, социальных и технических систем.
- Научить применять методы и полученные знания общетеоретического характера к анализу состояния и оценки устойчивости конкретной исследуемой динамической системы;
- Научить формулировать задачу изучения состояния динамической системы как задачу ее эволюции в полях действующих сил, уметь выбирать критерии оценки текущего состояния динамической системы и ее близости к критическому состоянию;
- Научить использовать для решения научно-технических проблем эволюции различных систем современные методы анализа, их состояния и прогноза возможных катастрофических явлений.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, зачет Второй семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 22 ч.
- -практические занятия: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение. Что такое нелинейная динамика?

Общее определение динамической системы. Нелинейное мышление Мандельштама. Предмет нелинейной динамики. Эволюция взглядов на динамические системы: от работ А. Пуанкаре до идей И. Пригожина, работ А.Н. Колмагорова, С.П. Курдюмова, Г. Хакена и современной математической теории нелинейных динамических систем.

Тема 2. Общие принципы и законы эволюции нелинейных динамических систем Математический маятник, нерегулярные хаотические колебания маятника. Роль информации в эволюции динамической системы. Принципиальное существование горизонта прогноза эволюции любых динамических систем.

Тема 3. Самоорганизация в нелинейных динамических системах

Ячейки Бинары, химические реакции Белоусова-Жаботинского. Ключевые идеи И. Пригожина о фундаментальных механизмах самоорганизации. Когда выгодны флуктуации? Неравновесность, необратимость, неустойчивость. Порядок через флуктуации.

Тема 4. Хаос и порядок.

Детерминированный хаос. Пути проникновения в хаос. Динамика Ферхюльста (модель роста популяции). Равновесное поведение и переход от порядка к хаосу. Аттрактор Лоренса.

Тема 5. Фрактальная геометрия природы Бенуа Мандельброта.

Понятие фрактала. Фрактальная геометрия — отказ от требования гладкости. Простейшие примеры фракталов (канторова пыль, фракталы Коха, салфетки Серпинского, дерево Пифагора). Стохастические фракталы. Фракталы в природе, геосреды и геоматериалы как природные фракталы.

Тема 6. Теория режимов с обострением

Стадии разрушения, переход от медленной квазистационарной стадии накопления повреждений к сверхбыстрому автокаталитическому (катастрофическому) режиму разрушения. Пространственная локализация деформации сменяется локализацией процесса во времени.

Тема 7. Принципы многомасштабности и иерархичности в структурной организации твердых тел.

Твердые тела — типичные нелинейные динамические системы. Масштабы разрушения, универсальный принцип фрактальной делимости твердых тел и сред. Самоподобие и автомодельность процесса разрушения во всей иерархии масштабов.

Тема 8. Нелинейные волны

Ударные волны. Механизмы формирования ударной волны. Соотношения Ренкина-Гюгонио. Понятие ударной адиабаты. Солитоны (уединенные волны).

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости и устного опроса по материалам предыдущих занятий, выполнения индивидуального задания, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух вопросов. Продолжительность зачета 1 час.

Зачет с оценкой во втором семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух вопросов. Продолжительность зачета с оценкой 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» http://lms.tsu.ru/course/view.php?id=22410 (первый семестр)
 http://lms.tsu.ru/course/view.php?id=24742 (второй семестр)
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских занятий по дисциплине.
 - г) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Кащенко С. А. Динамика моделей на основе логистического уравнения с запаздыванием / С. А. Кащенко. Москва : Красанд, 2020. 573 с.: ил. (Синергетика: от прошлого к будущему; N 102:)
- Пригожин И., Стенгерс И. Порядок из хаоса. Новый диалог человека с природой.
 М.: УРСС, 2014. 431 с.
- Голицын Г.С. Статистика и динамика природных процессов и явлений. Методы, инструментарий, результаты/ Г.С. Голицын.–М: Красанд, 2013.– 400 с.

- б) дополнительная литература:
- Пелюхова, Е.Б. Синергетика в физических процессах: самоорганизация физических систем. [Электронный ресурс] / Е.Б. Пелюхова, Э.Е. Фрадкин. Электрон. дан. СПб.: Лань, 2011. 448 с. Режим доступа: http://e.lanbook.com/book/649
- Синергетика и проблемы теории управления. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2004. 504 с. Режим доступа: http://e.lanbook.com/book/59320
- Нелинейная механика. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2001. 432 с. Режим доступа: http://e.lanbook.com/book/59276
- Шелухин, О.И. Самоподобие и фракталы. Телекоммуникационные приложения. [Электронный ресурс] / О.И. Шелухин, А.В. Осин, С.М. Смольский. Электрон. дан. М.: Физматлит, 2008. 368 с. Режим доступа: http://e.lanbook.com/book/2307
- Багдоев, А.Г. Линейные и нелинейные волны в диспергирующих сплошных средах. [Электронный ресурс] / А.Г. Багдоев, В.И. Ерофеев, А.В. Шекоян. Электрон. дан. М.: Физматлит, 2009. 320 с. Режим доступа: http://e.lanbook.com/book/2665 Загл. с экрана.
- Ерофеев, В.И. Волны в стержнях. Дисперсия. Диссипация. Нелинейность. [Электронный ресурс] / В.И. Ерофеев, В.В. Кажаев, Н.П. Семерикова. Электрон. дан. М.: Физматлит, 2002. 208 с. Режим доступа: http://e.lanbook.com/book/59310 Загл. с экрана.
- Молотков, И.А. Аналитические методы в теории нелинейных волн. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2003. 208 с. Режим доступа: http://e.lanbook.com/book/59356 Загл. с экрана.
- Режимы с обострением: эволюция идеи. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2006. 312 с. Режим доступа: http://e.lanbook.com/book/59453 Загл. с экрана.
- Макаров П.В. Об иерархической природе деформации и разрушения твердых тел и сред // Физ. мезомех. -2004. -T.7. -№4. -C.25–-34.
- Макаров П.В. Нагружаемый материал как нелинейная динамическая система. Проблема моделирования // Физ. мезомех. 2005. T.8. №6. C.39—56.
- Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М.: УРСС, 2003. 342 с. http://www.e-reading.club/bookreader.php/108302/Kapica Sinergetika i prognozy buduschego.html
 - в) ресурсы сети Интернет:
- SpringerLink [Electronic resource] / Springer International Publishing AG, Part of Springer Science+Business Media. Electronic data. Cham, Switzerland, [s. n.]. URL: http://link.springer.com/ (Электронный ресурс SpringerLink: http://link.springer.com/;).
- Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. Электрон. дан. М., 2000- . URL: http://elibrary.ru/defaultx.asp?;
- ScienceDirect [Electronic resource] / Elsevier B.V. Electronic data. Amsterdam,
 Netherlands, 2016. URL: http://www.sciencedirect.com/
 - Электронная библиотека ТГУ: http://www.lib.tsu.ru/ru;

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - __ 3GC IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных:
 - Научная электронная библиотека www.elibrary.ru
 - База данных по материаловедению Springer Materials www.materials.springer.com
- Библиотека журналов издательства John Wiley & Son и др., например, Wiley Online Library www.onlinelibrary.wiley.com
- Коллекции журналов Sage по естественным, техническим наукам и медицине www.online.sagepub.com
 - Политематическая база данных издательства Elsevier www.sciencedirect.com.

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Еремин Михаил Олегович, кандидат физико-математических наук, доцент кафедры прочности и проектирования физико-технического факультета.