Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Рабочая программа дисциплины

Концептуальное проектирование химико-технологических процессов

по направлению подготовки

04.04.01 Химия

Направленность (профиль) подготовки: **Цифровая химия**

Форма обучения **Очная**

Квалификация **Инженер-исследователь**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП А. С. Князев

Председатель УМК В.В. Шелковников

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2. Способен анализировать, интерпретировать и обобщать результаты экспериментальных и расчетно-теоретических работ в избранной области химии или смежных наук;
- ПК-1. Способен планировать работу и выбирать адекватные методы решения научно-исследовательских и/или производственных задач в выбранной области химии, химической технологии или смежных с химией науках;
- ПК-2. Способен к реализации и управлению химическими процессами на базе математического прогнозирования и моделирования;
 - ПК-3. Способен к решению профессиональных производственных задач.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК-2.2 Умеет анализировать, интерпретировать и обобщать данные, представленные в литературе и полученные в результате проведенных исследований в избранной области химии или смежных наук
- РОПК-1.4 Умеет проводить поиск, анализировать и обобщать результаты патентного поиска по тематике исследовательской работы
 - РОПК-2.1 Знает современные технологии производства химической продукции
- РОПК-3.1 Умеет анализировать имеющиеся нормативные документы по системам стандартизации, разработки и производству химической продукции и предлагать технические средства для решения поставленных задач
- РОПК-3.2 Умеет производить оценку применимости стандартных и/или предложенных в результате НИР технологических решений на применимость с учетом специфики изучаемых процессов

2. Задачи освоения дисциплины

- Ознакомление с современными подходами к проектированию XTC;
- Изучение теоретических основ проектирования XTC, с применением современных моделирующих систем;
- Формирование навыков выполнения химико-технологических расчетов, составление балансовых уравнений переноса импульса, массы и энергии, техникоэкономическое обоснование проектов.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Второй семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: основы проектирования химических и нефтехимических производств, термодинамика и кинетика в химической технологии, основы системного анализа и моделирование технологических процессов, процессы и аппараты нефтехимической промышленности, актуальные задачи современной химии.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 16 ч.
- -практические занятия: 16 ч.
 - в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Комплексный подход и методология выполнения концептуальных работ

Понятие концептуального проектирования, понятие масштабности проекта. Основные принципы реализации проектов, жизненный цикл проекта. Задачи концептуального проектирования. Методологическое и нормативное обеспечение концептуального проектирования. Типы концептуальных проектов и уровень проработки. Предпроектная документация. Методология и порядок выполнения концептуальных проектов.

Тема 2. Законы сохранения в концептуальном проектировании

Разработка предварительного материального и теплового баланса при концептуальном проектировании. Определение удельных норм расхода. Моделирование как инструмент составления материального и теплового балансов.

Тема 4. Оценка стоимостных показателей, расчет капитальных и операционных затрат

Капитальные вложения. Стоимостные законы оборудования химической и нефтехимической промышленности. Оценка стоимости объектов. Операционные затраты и их состав. Экономические модели.

Тема 5. Реинжиниринг

Цели и задачи выполнения работ по реинжинирингу. Отличие реинжиниринга от концептуальных проектов. Описание процесса разработки, сопровождения и мониторинга программ реинжиниринга и зон ответственности. Жизненный цикл с этапами выполнения работ по программе реинжиниринга. Энергоэффективность в программах реинжиниринга. Обоснование и результаты применения выбранного подхода.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, проведения коллоквиума, выполнения лабораторных работ, защиты индивидуального задания, и фиксируется в форме контрольной точки не менее одного раза в семестр

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой во втором семестре проводится в устной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность зачета с оценкой 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в среде электронного обучения iDO
- https://lms.tsu.ru
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Капустин В. М., Рудин М. Г., Кудринов А. М. Основы проектирования нефтеперерабатывающих и нефтехимических предприятий. Учебное пособие. -2012.-438 с.
- Кузьмин Т. Г., Молодых П. В. Экономика инвестиционного проекта в нефтегазовой отрасли. Учебное пособие. -2012.-261 с.
- Смит Р., Клемеш Й., Товажнянский Л.Л., Капустенко П.А., Ульев Л.М. Основы интеграции тепловых процессов. Харьков: НТУ «ХПИ». 2000. 458 с.

б) дополнительная литература:

- Андреева Н.Н., Нормативное обеспечение проектирования обустройства месторождений углеводородов/Н.Н. Андреева, О.Е. Бугрий, Е.А Дубовнцкая, В. В. Кононов, А.Е. Савинов, И. С. Сивоконь, С.В. Чижиков: Учебное пособие. М.: Российский государственный университет нефти и газа имени И.М. Губкина, 2015.- 303 с.
- Sinnott R. K. Coulson Richardson's Chemical Engineering Vol.6 Chemical Engineering Design 4th Edition. Elsevier Butterworth-Heinemann. 2005. 1038 c.
- James R. Couper, W. Roy Penney, James R. Fair, Stanley M. Walas. Chemical Process Equipment Selection and Design, Third Edition. Elsevier Butterworth-Heinemann. 2010. 864 c.

Warren D. Seider, Daniel R. Lewin, J. D. Seader, Soemantri Widagdo, Rafiqul Gani, Ka Ming Ng. Product and Process Design Principles: Synthesis, Analysis and Evaluation, 4th Edition. John Wiley & Sons. -2016. -772 c.

- в) ресурсы сети Интернет:
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - AspenONE Engineering;
 - Pinch 2.02;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/

- 9EC ZNANIUM.com https://znanium.com/
- ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Кузнецов Максим Тарасович, заместитель директора, научно-образовательный центр «Газпромнефть-ТГУ» Национального исследовательского Томского государственного университета;

Норин Владислав Вадимович, директор, научно-образовательный центр «Газпромнефть-ТГУ» Национального исследовательского Томского государственного университета».