Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Микропроцессоры

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки/ специализация: **Радиоэлектронные системы передачи информации**

Форма обучения **Очная**

Квалификация **Инженер**

Год приема 2025

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий.

ОПК-9 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.

ПК-2 Способен проводить научно-исследовательские и опытно--конструкторские разработки функциональных приборов и устройств радиоэлектроники.

ПК-4 Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-3.1. Знает основные законы функционирования и процессы, происходящие в радиоэлектронных системах и комплексах.

ИОПК-3.2. Анализирует, моделирует, прогнозирует поведение радиоэлектронных систем и комплексов.

ИОПК-3.3. Владеет навыками работы на современном измерительном и диагностическом оборудовании.

ИОПК-9.2. Владеет навыками работы в компьютерной среде.

ИПК-2.1. Осуществляет целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем.

ИПК-2.2. Использует современных пакеты прикладных программ для разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств комплексов передачи информации.

ИПК-2.3. Оформляет результаты разработки структурных, функциональных и принципиальные схемы радиоэлектронных устройств по принятым стандартам.

ИПК-4.1. Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации.

ИПК-4.2. Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров.

ИПК-4.3. Применяет стандартные прикладные программные средства при проведении модельных экспериментов.

2. Задачи освоения дисциплины

- изучить архитектуру современных систем сбора, хранения, обработки информации и управления процессами
- изучить аппаратные и программные компонентами микропроцессорных систем

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Общепрофессиональный цикл. Обязательная часть», является обязательной для изучения.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Четвертый семестр, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Б1.У.О.03 «Физика», Б1.У.О.10 «Программирование», Б1.О.О.01 «Радиоэлектроника».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 30 ч.

в том числе практическая подготовка: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Архитектура современных систем сбора, хранения, обработки информации и управления процессами.

Тема 1. Подсистема сбора информации (датчики первичной информации).

Тема 2. Подсистема аналого-цифрового и цифро-аналогового преобразования информации.

Тема 3. Подсистема управления

Тема 4. Подсистема цифровой обработки информации.

Тема 5. Подсистема хранения информации.

Раздел 2. Логические элементы и их технические реализации (логика схем).

Тема 1. Иерархия языков формального описания компонентов системы.

Тема 2. Базовые аналоговые и цифровые функциональные элементы и их схемотехнические решения.

Тема 3. Комбинационные логические схемы (КЛС). Синтез КЛС. Элементарные КЛС (мультиплексоры, дешифраторы, компараторы, сумматоры).

Раздел 3. Подсистема хранения цифровой информации.

Тема 1. Классификация запоминающих устройств (ЗУ).

Тема 2. Триггеры, регистры, счетчики.

Тема 3. Программируемые логические матрицы (ПЛМ) и логические интегральные схемы (ПЛИС).

Тема 4. Адресные, ассоциативные и стековые запоминающие устройства. Схемотехническая реализация ЗУ. Характеристики ЗУ.

Раздел 5. Магистрально-модульный принцип организации системы.

Тема 1. Понятие магистрали. Типы магистралей. Режимы работы магистралей.

Тема 2. Процессор системы.

Тема 3. Модель внешнего устройства. Модули системы, функциональное назначение и технические характеристики.

Раздел 6. Режимы функционирования микропроцессорной системы.

Тема 1. Принципы взаимодействия внешних устройств с подсистемой цифровой обработки информации.

Тема 2. Программный режим.

Тема 3. Режим приоритетных прерываний. Организация прерываний.

Раздел 7. Архитектура процессора.

Тема 1. Функциональные узлы процессора (арифметико-логическое устройство, ре-

гистр состояния, регистр команд, управляющая память, кэш – память).

- Тема 2. Классификация и принципы организации процессоров.
- Тема 3. Понятие производительности процессора и пути ее повышения.
- Тема 4. Архитектура процессора с одиночным потоком команд и данных.

Тема 5. Архитектура процессора с упрощенным параллельным потоком команд и данных.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем проверки посещаемости, проверки выполнения лабораторных работ, проверки тестов по лекционному материалу. Результаты фиксируются контрольной точки не менее одного раза в семестр.

Темы для самостоятельной работы включают:

- 1. Аналоговая и цифровая формы представления ауди- и видео- информации;
- 2. ЭСЛ, МОП, КМОП логики функциональных элементов и их схемотехнические решения;
- 3. Синтез логических автоматов;
- 4. Цифро-аналоговые преобразователи (ЦАП) и аналого-цифровые преобразователи (АЦП);
- 5. Модель внешнего устройства микропроцессорной системы;
- 6. Функциональные узлы процессора.
- 7. Организация автоматического выполнения команд.
- 8. Режим приоритетных прерываний. Организация прерываний.

Темы лабораторных занятий:

- 1. Кодирование информации.
- 2. Моделирование дешифраторов.
- 3. Моделирование сумматора.
- 4. Моделирование работы устройств памяти.
- 5. Моделирование аналого-цифрового преобразователя.
- 6. Моделирование цифро-аналогового преобразователя.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в четвертом семестре проводится в форме тестирования. Промежуточные тесты по лекциям и итоговый тест находятся в системе Mudl. К результатам тестирования добавляются результаты проведения лабораторных работ.

Примерный перечень вопросов в тестах.

- 1. Назовите полные базисы логических функций?
- 2. Какая из предложенных схем выполняет функцию ИЛИ-НЕ?
- 3. Как реализовано схемное И?
- 4. Какой из специальных регистров используется в работе стековой памяти?
- 5. Какую функцию выполняет контроллер прерываний?
- 6. Какой способ доступа реализован при обращении к Кэш-памяти?
- 7. Что входит в состав процессора?
- 8. Что называют адресным пространством памяти?
- 9. Назначение регистра флагов?
- 10. Что называют векторами прерываний?

Критерии оценивания при проведении зачета:

Компе-	Индикатор компе-	Критерии оценивания резул	ьта-
тенция	тенции	тов обучения	

		Не зачтено	Зачтено
ОПК-3. Способен к логическому мышлению, обобщению, прогнозированию, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научнотехнических задач в области радиоэлектронной техники и информационнокоммуникационных технологий.	иопк -3.1. Знает основные законы функционирования и процессы, происходящие в радиоэлектронных системах и комплексах. иопк -3.2. Анализирует, моделирует, прогнозирует поведение радиоэлектронных систем и комплексов. иопк -3.3. Владеет навыками работы на современном измерительном и диагностическом оборудовании.	Не знает основные законы функционирования и процессы, происходящие в радиоэлектронных системах и комплексах. Не способен анализировать, прогнозировать поведение радиоэлектронных систем и комплексов. Не владеет навыками работы на современном измерительном и диагностическом оборудовании.	Применяет основные законы функционирования и процессы, происходящие в радиоэлектронных системах и комплексах. Анализирует, прогнозирует поведение радиоэлектронных систем и комплексов. Применяет приемы работы на современном измерительном и диагностическом оборудовании.
ОПК-9. Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.	иопк -9.2. Владе- ет навыками работы в компьютерной среде.	Не владеет навы- ками работы в компьютерной среде.	Владеет навыками работы в компьютерной среде.
ПК-2. Способен проводить научно-исследовательские и опытно-конструкторские	ИПК -2.1. Осуществляет целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем.	Не способен осуществлять целенаправленный сбор и анализ исходных данных для разработки	Осуществляет целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и прин-

разработки функциональных приборов и устройств радиоэлектроники.

ИПК -2.2. Использует современных пакеты прикладных программ для разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств комплексов передачи информации.

ИПК -2.3. Оформляет результаты разработки структурных, функциональных и принципиальные схемы радиоэлектронных устройств по принятым стандартам.

структурных, функциональных и принципиальных схем.

Не способен использовать современные пакеты прикладных программ для разработки структурфункционых, нальных и принципиальных схем радиоэлектронных устройств комплексов передачи информации. He способен оформлять peзультаты разработки структурных, функциональных и принципиальные схерадиоэлек-МЫ тронных устройств по при-МИТКН стандартам.

ципиальных схем.

Использует современные пакеты прикладных программ для разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств комплексов передачи информации.

Применяет приемы оформления результатов разработки структурных, функциональных и принципиальные схемы радиоэлектронных устройств по принятым стандартам.

ПК-4. Способен

Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ.

ИПК -4.1. Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации.

ИПК -4.2. Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров.

ИПК -4.3. Применяет стандартные прикладные программные средства при проведении модельных экспериментов.

Не владеет прикладными методами моделирования процессов в радиоэлектронных системах передачи информации.

Не владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров.

Не владеет способами примене-

Применяет методы моделирования процессов в радиоэлектронных системах передачи информации. Использует приемы компьютерного моделирования радиоэлектронных систем комплексов передачи информации с целью предсказания и улучшения их параметров. Владеет способами применения стандартных прикладных программных средства при проведении модельных экспериментов.

	ния стандартных	
	прикладных программных сред-	
	ства при проведении модельных	
	экспериментов.	

Промежуточные тесты по лекциям и итоговый тест находятся в системе «Moodle». К результатам тестирования добавляются результаты проведения лабораторных работ, которые построены по принципу зачтено/не зачтено. Студент, не аттестованный по лаборатории, не допускается к сдаче итогового теста.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=00000
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине в пункте 10.
- в) Методические указания по проведению лабораторных работ в электронном университете «Moodle».
- д) Методические указания по организации самостоятельной работы студентов в электронном университете «Moodle».

В образовательном процессе используется технология развивающего обучения с привлечением исследовательских методов, которая дает возможность учащимся самостоятельно пополнять свои знания, глубоко вникать в изучаемую проблему и предполагать пути ее решения. Используется технология проблемного обучения с созданием в учебной деятельности проблемных ситуаций и организации активной самостоятельной деятельности учащихся по их разрешению, в результате чего происходит творческое овладение знаниями, умениями, навыками, развиваются мыслительные способности. В процессе обучения используется тестирование студентов по темам с использованием ресурсов MOODLE. Общая логика хода освоения дисциплины заключается в: ознакомлении со структурой курса, используя рабочую программу и электронный учебный курс (ЭУК); ознакомлении с методическими рекомендациями по использованию электронного учебного курса; использовании записи лекции и материалов ЭУК накануне следующей лекции вспомнить материал предыдущей; использовании презентации соответствующего раздела ЭУК накануне следующей лекции ознакомиться с ее примерным содержанием; изучении теоретического материала по учебнику и конспекту; регулярной подготовке к практическим и лабораторным занятиям путем решения домашнего задания.

Самостоятельная работа включает в себя: изучение рекомендуемой учебной литературы; рассмотрение примеров решений типовых задач и вариантов ответов; решения задач из сборника задач; рассмотрение информационных ресурсов по изучаемой теме в сети Интернет.

12. Перечень учебной литературы и ресурсов сети Интернет

а) основная литература:

- 1. Девид М. Харрис, Сара Л. Харрис. Цифровая схемотехника и архитектура компьютера. М: ДМК Пресс, 2018. 792 с.
- 2. Мясников, В. И. Микропроцессорные системы: учебное пособие / В. И. Мясников. Йошкар-Ола: ПГТУ, 2019. 200 с. ISBN 978-5-8158-2077-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/121696

- 3. Шустов, М. А. Цифровая схемотехника. Основы построения / М. А. Шустов. СанктПетербург: Наука и Техника, 2018. 320 с. ISBN 978-5-94387-875-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/109408
- 4. Васильев, И. А. Основы микропроцессорной техники с элементами моделирования в среде Multisim: учебное пособие / И. А. Васильев. М: МГТУ им. Н.Э. Баумана, 2017. 60 с. ISBN 978-5-7038-4647-6. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/103281
- 5. Система Multisim. URL: http://pascalabc.net/downloads/pabcnethelp/index.htm

б) дополнительная литература:

- 1. О.В. Миловзоров, И.Г. Панков. Электроника. M.: Юрайт, 2015. 380c.
- 2. Русанов В.В., Шевелев М.Ю. Микропроцессорные устройства и системы. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012. 184с.
- 3. Антипин М.Е. Микропроцессорные устройства и системы. Методические указания по выполнению студентами самостоятельной работы, 2012. 4с.

в) ресурсы сети Интернет:

1. Жуков А.А., Мещеряков В.А. Микропроцессоры [Электрон. ресурс]: электронный учебный курс на базе виртуальной обучающей среды MOODLE Электрон. дан. – Томск: ТГУ, 2014. – URL: http://moodle.tsu.ru/course/view.php?id=1821

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook); публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.). Система Multisim. URL: http://pascalabc.net/downloads/pabcnethelp/index.htm.
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

в) профессиональные базы данных:

- Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатории оборудованы системой Multisim. – URL: http://pascalabc.net/downloads/pabcnethelp/index.htm

15. Информация о разработчиках

Мещеряков Владимир Алексеевич, кандидат физико-математических наук, доцент кафедры радиоэлектроники, доцент.