Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Биофизика неионизирующих излучений

по направлению подготовки

06.04.01 Биология

Направленность (профиль) подготовки: **Фундаментальная и прикладная биология**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Симакова

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен использовать и применять фундаментальные биологические представления и современные методологические подходы для постановки и решения новых нестандартных задач в сфере профессиональной деятельности.
- ОПК-2 Способен творчески использовать в профессиональной деятельности знания фундаментальных и прикладных разделов дисциплин (модулей), определяющих направленность программы магистратуры.
- ОПК-3 Способен использовать философские концепции естествознания и понимание современных биосферных процессов для системной оценки и прогноза развития сферы профессиональной деятельности.
- ПК-1 Способен обрабатывать и использовать научную и научно-техническую информацию при решении исследовательских задач в соответствии с профилем (направленностью) магистерской программы.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.3 Применяет общие и специальные представления, методологическую базу биологии и смежных наук при постановке и решении новых нестандартных задач в сфере профессиональной деятельности.
- ИОПК-2.3 Использует фундаментальные знания, практические наработки и методический базис специальных дисциплин, определяющих направленность программы магистратуры, при планировании и реализации профессиональной деятельности.
- ИОПК-3.2 Демонстрирует понимание фундаментальных представлений о биосфере, моделей и прогнозов развития биосферных процессов, теоретические и методологические основы экологического мониторинга.
- ИПК-1.1 Применяет знания фундаментальных и прикладных разделов дисциплин (модулей), определяющих направленность (профиль) программы магистратуры при решении отдельных исследовательских задач.

2. Задачи освоения дисциплины

- Освоить характеристики и принципы биологического действия неионизирующего излучения различных интенсивностей естественного и искусственного происхождения для последующего решения задач в сфере профессиональной деятельности.
- Научиться применять полученные знания для системной оценки и прогноза развития сферы профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования — по дисциплинам: «Физика», «Химия», «Биохимия», «Радиоэлектроника», «Физиология человека и животных», «Биофизика».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-лекции: 8 ч.

-семинар: 18 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение в дисциплину. Характеристика и биофизические параметры неионизирующих излучений

Основные характеристики и классификация неионизирующих радиочастотных и ультразвуковых излучений. Источники радиочастотных и ультразвуковых излучений. Модуляция электромагнитных и ультразвуковых излучений, виды модуляции. Естественные и техногенные источники неионизирующих излучений.

Тема 2. Взаимодействие неионизирующих излучений с биообъектами

Поглощение энергии ЭМИ РЧ и ультразвука веществом. Зависимость поглощения от параметров излучения и свойств объекта. Физические условия преобразования электромагнитной и ультразвуковой энергии в тепловую. Электрические свойства молекул и клеток в РЧ диапазоне. Количественное оценивание интенсивности радиочастотных ЭМИ. Количественное оценивание интенсивности ультразвуковых излучения. Дозиметрия радиочастотных и ультразвуковых излучений.

Тема 3. Механизмы и общие закономерности биологического действия радиочастотных и ультразвуковых излучений на живые системы

Общий подход к пониманию механизмов биологического действия ЭМИ радиочастотного диапазона и ультразвука. Тепловые и нетепловые механизмы. Первичный механизм теплового действия ЭМИ РЧ и ультразвуковых излучений. Особенность и общий характер эффектов влияния ЭМИ и ультразвука нетепловой природы. «Окна по частоте и интенсивности» электромагнитных излучений У.Р. Эйди. Микролокальные нагревы биоструктур при воздействии ЭМИ РЧ. Экспериментальное подтверждение существования микролокальных нагревов. Механизм, лежащий в основе изменения проводимости мембран в случае микролокальных нагревов. Гипотезы о механизмах нетеплового действия ЭМИ и ультразвуковых излучений.

Тема 4. Влияние неионизирующих излучений на человека

Влияние ЭМИ РЧ и ультразвука на сердечно-сосудистую, эндокринную, иммунную системы. Стратегия нормирования ЭМИ РЧ в России. Общая характеристика ПДУ, лежащих в основе нормирования. УВЧ-, МКВ-, КВЧ- УЗ-терапия. Применение радиочастотных и УЗ излучений в медицинской диагностике Радиотермометрия. Использование радиочастотного и ультразвукового излучений в медицине, ветеринарии, биотехнологии.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения тестов по лекционному материалу, решения задач, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Итоговый зачет в третьем семестре по дисциплине «Биофизика неионизирующих излучений» состоит из контроля самостоятельной работы, работы на семинарских занятиях (текущий контроль) и итогового результата при ответе на вопросы билета, проводится в письменной форме по билетам, позволяет оценить формирование компетенций ОПК-1, ОПК-2, ОПК-3, ПК-1. Билет состоит из двух вопросов. Продолжительность зачёта составляет 1 час.

Вопросы к зачету по дисциплине «Биофизика неионизирующих излучений»

ИОПК-1.3 Применяет общие и специальные представления, методологическую базу биологии и смежных наук при постановке и решении новых нестандартных задач в сфере профессиональной деятельности

- 1. Актуальность и проблемы изучения биологического действия радиочастотных электромагнитных излучений. Характеристики действующего фактора.
- 2. Актуальность и проблемы изучения биологического действия ультразвукового излучения Характеристики действующего фактора.
- 3. Модуляция электромагнитных и ультразвуковых излучений, виды модуляции.
 - 4. Естественные и техногенные источники неионизирующих излучений.
- 5. Поглощение энергии ЭМИ РЧ и УЗ веществом. Зависимость поглощения от параметров излучения и свойств объекта.

ИОПК-2.3 Использует фундаментальные знания, практические наработки и методический базис специальных дисциплин, определяющих направленность программы магистратуры, при планировании и реализации профессиональной деятельности

- 6. Физические условия преобразования электромагнитной и ультразвуковой энергии в тепловую.
 - 7. Электрические свойства молекул и клеток в РЧ диапазоне.
 - 8. Количественное оценивание интенсивности радиочастотных ЭМИ
 - 9. Количественное оценивание интенсивности УЗ излучения.
- 10. Общий подход к пониманию механизмов биологического действия ЭМИ радиочастотного диапазона и УЗ.

ИОПК-3.2 Демонстрирует понимание фундаментальных представлений о биосфере, моделей и прогнозов развития биосферных процессов, теоретические и методологические основы экологического мониторинга

- 11. Тепловые и нетепловые механизмы. Первичный механизм теплового действия ЭМИ РЧ и УЗ. Особенность и общий характер эффектов влияния ЭМИ и УЗ нетепловой природы.
 - 12. «Окна по частоте и интенсивности» электромагнитных излучений У.Р. Эйди
- 13. Микролокальные нагревы биоструктур при воздействии ЭМИ РЧ. Экспериментальное подтверждение существования микролокальных нагревов.
- 14. Механизм, лежащий в основе изменения проводимости мембран в случае микролокальных нагревов

ИПК-1.1 Применяет знания фундаментальных и прикладных разделов дисциплин (модулей), определяющих направленность (профиль) программы магистратуры при решении отдельных исследовательских задач

- 15. Гипотезы о механизмах нетеплового действия ЭМИ и УЗ.
- 16. Влияние ЭМИ РЧ и УЗ на сердечно-сосудистую, эндокринную, иммунную системы.
- 17. Стратегия нормирования ЭМИ РЧ в России. Общая характеристика ПДУ, лежащих в основе нормирования.
 - 18. УВЧ-, МКВ-, КВЧ- УЗ-терапия.
 - 19. Применение радиочастотных и УЗ излучений в медицинской диагностике.
 - 20. Электромагнитные излучения человека. Радиотермометрия, УЗ-томография.

Результаты зачета определяются как «зачтено» / «не зачтено».

Оценка	Критерии оценки
Не зачтено	Нет ответа даже на общие вопросы
Зачтено	Неполный ответ на все вопросы, полный развернутый
	или частично неполный ответ на все вопросы

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в среде электронного обучения iDO https://lms.tsu.ru/course/view.php?id=18968
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских занятий по дисциплине:
 - Актуальность и проблемы изучения биологического действия радиочастотных и лазерных электромагнитных излучений. Характеристики действующих факторов (4 часа);
 - Модуляция электромагнитных и ультразвуковых излучений, виды модуляции (2 часа).
 - Количественное оценивание интенсивности радиочастотных и ультразвуковых ЭМИ (4 часа);
 - Тепловые и нетепловые механизмы. Первичный механизм теплового действия ЭМИ РЧ и УЗ. Особенность и общий характер эффектов влияния ЭМИ и УЗ нетепловой природы (4 часа);
 - Применение радиочастотных и УЗ излучений в медицинской диагностике (4 часа).
 - г) Методические указания по организации самостоятельной работы студентов.

Самостоятельная работа студентов предполагается в форме углубленного изучения теоретических вопросов, представленных в разделе 8, подготовки к семинарским занятиям.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Бинги В.Н. Принципы электромагнитной биофизики. М.: Физматлит, 2011 592
 с.
- Кудряшов Ю.Б., Перов Ю.Ф., Рубин А.Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения. 2008. 184 с.
- Карташев А.Г., Большаков М.А. Основы электромагнитной экологии: Учебное пособие. Томск: ТГУ, 2005.-206 с.
- Жорина Л.В., Змиевский Г.Н. (2006). Основы взаимодействия физических полей с биологическими объектами. Издательство МГТУ, 240 с.
 - б) дополнительная литература:
- Аполлонский С.М., Каляда Т.В., Синдаловский Б.Е. Безопасность жизнедеятельности человека в электромагнитных полях. Учебное пособие. Спб: Политехника, 2006, 263
- Исмаилов Э.Ш. Биофизическое действие СВЧ- излучений. М.: Энергоатомиздат, 1987.- 144 с.

- в) ресурсы сети Интернет:
- Биологические эффекты электромагнитных полей КВЧ диапазона [Электронный ресурс] : М., 2009. www.url: http://univertv.ru/video/biology/obwaya_biologiya/biofizika/biologicheskie_effekty_elektromag nitnyh_polej_kvch_diapazona/
- Низкоинтенсивное ЭМИ КВЧ [Электронный ресурс] : М., 2009. Режим доступа: www.url: http://univertv.ru/video/biology/obwaya_biologiya/biofizika/nizkointensivnoe_emi_kvch/?mark = science1
- Григорьев Ю.Г. Мобильный телефон и неблагоприятное влияние на головной мозг пользователя оценки риска [Электронный ресурс] / Ю.Г. Григорьев: М., 2014. Режим доступа: www.url: http://elibrary.ru/item.asp?id=21378630

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ –
 http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
- Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. Электрон. дан. М., 2000- . URL: http://elibrary.ru/defaultx.asp?

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Самойлова Анна Викторовна, кандидат биологических наук, кафедра физиологии человека и животных Биологического института ТГУ, доцент.