Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Баллистика и навигация космических аппаратов

по направлению подготовки

24.04.03 Баллистика и гидроаэродинамика

Направленность (профиль) подготовки: **Баллистика ракетно-ствольных систем**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП К.С. Рогаев

Председатель УМК В.А. Скрипняк

Томск - 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен ставить и решать задачи по проектированию, конструированию и производству объектов профессиональной деятельности при использовании современных информационных технологий;.
- ОПК-6 Способен разрабатывать и использовать новые подходы и методы расчета объектов ракетно-космической техники с учетом аэродинамических и баллистических параметров.
- ОПК-7 Способен анализировать и обобщать результаты физического и численного моделирования, обоснованно выбирать аэродинамические и баллистические параметры ракет и космических аппаратов..
- ПК-2 Способен применять знания на практике, в том числе составлять математические модели профессиональных задач, находить способы их решения и интерпретировать профессиональный (физический) смысл полученного математического результата.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.1 Знать общие принципы постановки и решения проектных и конструкторских задач.
- ИОПК 2.2 Уметь ставить и решать задачи по проектированию, конструированию и производству объектов профессиональной деятельности в рамках современных информационных технологий
- ИОПК 2.3 Владеть навыками использования современных информационных технологий при решении профессиональных задач
- ИОПК 6.1 Знать передовые методы расчета объектов ракетно-космической техники с учетом аэродинамических и баллистических параметров
- ИОПК 6.2 Уметь разрабатывать и использовать новые подходы и методы расчета объектов ракетно-космической техники с учетом аэродинамических и баллистических параметров
- ИОПК 6.3 Владеть навыками анализа влияния аэродинамических и баллистических параметров на характеристики объектов ракетно-космической техники
- ИОПК 7.1 Знать способы учета аэродинамических и баллистических параметров ракет и космических аппаратов при физическом и численном моделировании
- ИОПК 7.2 Уметь выбирать аэродинамические и баллистические параметры ракет и космических аппаратов на основе анализа результатов моделирования
- ИОПК 7.3 Владеть навыками проведения и анализа результатов физического и численного моделирования
- ИПК 2.1 Знает математическое описание законов баллистики и гидроаэродинамики.
- ИПК 2.2 Умеет составлять математические модели профессиональных задач и находить способы их решения
- ИПК 2.3 Осуществляет анализ и интерпретацию результатов математического моделирования

2. Задачи освоения дисциплины

- Овладение студентами фундаментальными основами знаний теории и практики исследований в области основ технологии конструирования и подходах расчета на прочность артиллерийских систем.
- Овладение студентами ориентации в выборе баллистической установки для проведения необходимых испытаний для проведения баллистических экспериментов.

— Овладение студентами методами решения комплекса задач, связанных с построением математических моделей, проведением расчетных работ, анализа состояния исследуемого вопроса и определения направления исследований

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Второй семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Динамика полета тел, стабилизируемых вращением.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 10 ч.
- -практические занятия: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

- **Тема 1.** Исторический обзор развития отечественной космической техники и космической техники США. Задачи выведения на орбиту. Траектория выведения на орбиту.
- **Тема 2.** Задачи управления ориентацией и движением космических аппаратов. Основные системы координат в задачах управления. Управляемое вращательное движение. Внешние возмущающие моменты.
- **Тема 3.** Методы и инструменты астрономической навигации. Среднеорбитальные спутниковые навигационные системы. Дифференциальная навигация. Применение навигационных систем.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет во втором семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из одной частей. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

а) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Севастьянов Н.Н. Разработка концепции, обобщение опыта создания и практики управления космическими аппаратами связи нового поколения (на примере спутниковой системы связи «Ямал»): дисс. ... канд. тех. наук. Королёв: РКК «Энергия», 2007.
- 2. Моишеев А. А. Прецизионные конструкции космических аппаратов: учебное пособие / А. А. Моишеев; Моск. авиационный ин-т (нац. исслед. ун-т). М.: изд-во МАИ-Принт, 2011.-47 с.
- 3. Анпилогов В. Системы на основе геостационарных спутников связи и вещания Ка-диапазонов // Технологии и средства связи. Специальный выпуск: Спутниковая связь и вещание. 2013.
- 4. Викторова В. С. Модели и методы расчета надежности технических систем / В. С. Викторова, А. С. Степанянц. М.: Ленанд, 2014. 254 с.
- 5. Степанов В. П. Внешняя баллистика. Ч. 2 / В. П. Степанов; Том. гос. ун-т. Томск: Издательство Том. ун-та, 2011.-540 с. URL:

http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000408012

б) дополнительная литература

- 1. Авиационные материалы и технологии: юбилейный научно-технический сборник (приложение к журналу "Авиационные материалы и технологии") / под общ ред. Е. Н. Каблова; [отв. за вып. В. Г. Дворяшин]; Всероссийский НИИ авиационных материалов; Гос. науч. ценр Российской Федерации. М.: ВИАМ, 2012. 475 с.: ил.
- 2. Севастьянов Н.Н., Графодатский О.С., Белобров А.Н., Бачурин В.М. Итоговый научно-технический отчет по ЛИ БРК-1 и БРК-2 КА «Ямал-300К»

ПГК.2726-12-560. Королёв: ОАО «ГАЗПРОМ КОСМИЧЕСКИЕ СИСТЕМЫ», 2012.

- 3. Мерзляков В. Д. Экспериментальные методы исследования: учебное пособие. Ч. 1 / В. Д. Мерзляков, А. В. Мерзляков; Том. гос. ун-т. Томск: [б. и.], 2006. 219 с.
- 5. Конструкция управляемых баллистических ракет / под. ред. А. М. Синюков, Н. И. Морозов. М: Воениздат, 1969. 444 с.
 - в) ресурсы сети Интернет:

Все виды информационных ресурсов Научной библиотеки ТГУ. Информационные источники сети Интернет.

– Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).

- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ –

http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system

- Электронная библиотека (репозитарии) ТГУ –
- $\underline{http://vital.lib.tsu.ru/vital/access/manager/Index}$
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 3FC ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Биматов Владимир Исмагилович, док. физ.-мат. наук, профессор кафедры Динамики полета.