Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Механика неньютоновской жидкости

по направлению подготовки

16.04.01 Техническая физика

Направленность (профиль) подготовки: **Компьютерный инжиниринг высокоэнергетических систем**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП А.Ю. Крайнов А.В. Шваб Л.Л. Миньков

Председатель УМК В.А. Скрипняк

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-4 Способен вскрыть физическую, естественнонаучную сущность проблем, возникающих в ходе осуществления профессиональной деятельности, проводить их качественный и количественный анализ..

ПК-2 Способен самостоятельно применять знания на практике, в том числе составлять математические модели профессиональных задач, находить способы их решения, интерпретировать физический смысл полученного математического результата и документировать его в виде отчета.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 4.1 Знать естественнонаучную сущность основных процессов в избранной области технической физики.
- ИОПК 4.2 Уметь использовать методы качественного и количественного анализа для выявления физических проблем, возникающих в ходе профессиональной деятельности.
- ИОПК 4.3 Владеть методиками анализа проблем, возникающих в ходе профессиональной деятельности в избранной области технической физики.
- ИПК 2.1 Знать способы математического моделирования в области вычислительной теплофизики, аэрогазодинамики, теории горения
- ИПК 2.2 Уметь составлять математические модели профессиональных задач и находить способы их решения
- ИПК 2.3 Владеть навыками анализа и интерпретации результатов математического моделирования

2. Задачи освоения дисциплины

- 1) формирование современного представления об основных классификациях и методах связанных с изучением неньютоновской жидкости.
 - 2) изучить инженерные методы расчета течений неньютоновских жидкостей
- 3) познакомиться с применением методов расчета течений неньютоновских жидкостей при проектировании технологических устройств

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль «Аддитивные технологии и компьютерное моделирование в технической физике».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 10 ч.
- -практические занятия: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1: «Классификация неньютоновских жидкостей»

Виды жидкостей и их свойства

Тема 2: «Одномерные модели вязкоупругих жидкостей»

Представление жидкости механической моделью. Модель Фойгта. Модель Максвелла

Тема 3: «Неньютоновские жидкости с реологическими характеристиками, независящими от времени»

Бингамовский пластик. Псевдопластик. Дилатантная жидкость

Тема 4: «Неньютоновские жидкости, реологические характеристики которых зависят от времени»

Тиксотропные и реопективные жидкости. Их характеристики и различия. Гистерезис.

Тема 5: «Ламинарное течение неньютоновских жидкостей в трубах и каналах» Основные соотношения, способы расчета. Профиль скоростей, расход, способы расчета.

Тема 6: «Турбулентное течение реологически стационарных жидкостей»

Основные соотношения, способы расчета. Расход, способы расчета

Тема 7: «**Теплообмен при ламинарном течении неньютоновской жидкости**» Основные соотношения, способы расчета

Тема 8: «Теплообмен при турбулентном течении в трубе»

Основные соотношения, способы расчета

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=24759
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
- в) Классификация неньютоновских жидкостей. Течение неньютоновских жидкостей в трубах Учебно-методическое пособие по курсу «Механика неньютоновской

жидкости» для студентов физико-технического факультета / Нариманов Р.К., Нариманова Γ .Н. - Изд-во $T\Gamma$ У- 2019-34c.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1). Уилкинсон У.Л. Неньютоновские жидкости, М., Мир, 1964, 216 стр.
- 2). Шульман З.П. Конвективный тепломассоперенос реологически сложных жидкостей, М., Энергия, 1975, 352 стр.
- 3) Смольский Б.М., Шульман З.П., Гориславец В.М. Реодинамика и теплообмен нелинейно вязкопластичных материалов Минск, Наука и техника, 1970, 448 стр.
- 4) Звягин В.Г., Турбин М.В. Математические вопросы гидродинамики вязкоупругих сред. М.: Красанд, 2012. 418 с.
- 5). Нелинейные и неравновесные эффекты в реологически сложных средах / М. М. Хасанов, Г. Т. Булгакова. М.: Ин-т компьютерных исследований, 2003. 287 с.
- 6) Течение и теплообмен неньютоновских жидкостей в трубах / Г. Б. Фройштетер, С. Ю. Данилевич, Н. В. Радионова; Отв. ред. Н. И. Никитенко; АН УССР, Ин-т техн. теплофизики, Всесоюз. н. -и. и проект. -конструкт. ин-т нефтеперераб. и нефтехим. пром-сти. Киев: Наукова думка, 1990. 215 с
- б) дополнительная литература:
- 1) Основы практической реологии и реометрии / Г. Шрамм; пер. с англ. И. А. Лавыгина; под ред. В. Г. Куличихина. М.: КолосС, 2003. 311 с.
- 2) Гидроаэродинамика / Т. Е. Фабер; пер. с англ. В. В. Коляды; под ред. А. А. Павельева. М.: Постмаркет, 2001. 559 с.
- 3) Математические модели неньютоновских жидкостей. Учебное пособие / В. Г. Звягин, Д. А. Воротников. Изд. Воронежского гос. Университета, 2004. 43 с..
- в) ресурсы сети Интернет:
- Общероссийская Сеть Консультант Π люс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Нариманов Ринат Казбекович, кандидат физико-математических наук, доцент кафедры прикладной аэромеханики