Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

САЕ Институт «Умные материалы и технологии»

УТВЕРЖДАЮ:

Директор

И.А. Курзина

« 05

2024 г.

Рабочая программа дисциплины

Бактериальная геномика

по направлению подготовки

19.03.01 Биотехнология

Направленность (профиль) подготовки: «Молекулярная инженерия»

Форма обучения Очная

Квалификация Бакалавр

Год приема 2025

СОГЛАСОВАНО:

Руководитель ОП

И.А. Курзина

Председатель УМК

Г.А. Воронова

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен изучать, анализировать, использовать биологические объекты и процессы, основываясь на законах и закономерностях математических, физических, химических и биологических наук и их взаимосвязях;
- ПК-2 Способен к реализации и управлению биотехнологическими процессами Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:
- ИОПК-1.1. Демонстрирует способность применять законы математических, физических, химических и биологических наук и их взаимосвязи при решении поставленной задачи;
- ИОПК-1.2. Владеет методами теоретического и экспериментального исследования биологических и химических процессов, анализа и обработки экспериментальных данных.
- ИПК-2.1. Применяет методы управления отдельными стадиями биотехнологических процессов

2. Задачи освоения дисциплины

— ознакомление студентов с современными концепциями регуляции реализации генетической информации в клетках прокариот и ее использования для создания рекомбинантных бактерий для решения задач практической биотехнологии

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 5, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения дисциплин: молекулярная биология, синтетическая биология, молекулярная генетика, микробиология, биология клетки

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 24 ч.;
- семинарские занятия: 0 ч.
- практические занятия: 44 ч.;
- лабораторные работы: 0 ч.

в том числе практическая подготовка: 44 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Краткая история становления генной инженерии ее инструментария.

Краткая история становления генной инженерии ее инструментария. Основные этапы процесса транскрипция у прокариот. 1953 Синтез ДНК in vitro, Соединение (лигирование) фрагментов ДНК, эндонуклеазы рестрикции, Введение ДНК клетки Е.coli. Первая гибридная молекула ДНК. Подходы к клонированию ДНК. Оперон - функциональная транскрипционная единица генома у прокариот. Инициация. Элонгация. Терминация. Структура типичных промоторов кишечной палочки

Тема 2. Трансляция у прокариот и ее регуляция.

Основные этапы процесса трансляции у прокариот. Рибосвичи. Инициация. Образованные 70S, содержащего мРНК и fMet-tRNAfMet как субстрат для пептидилтрансферазного центра 50S рибосомной субъединицы, готового к вступлению в фазу элонгации трансляции.

Элонгация. Узнавание текущего кодона соответствующей ему аминоацил-тРНК (комплементарное взаимодействие кодона мРНК и антикодона тРНК увеличено). Присоединение аминокислоты, принесённой тРНК, к концу растущей полипептидной цепи.

Продвижение рибосомы вдоль матрицы, сопровождающееся высвобождением молекулы тРНК. Присоединение следующей молекулы аминоацил-тРНК. Движение рибосомы по молекуле мРНК до стоп-кодона. Терминация. Узнавание рибосомой стоп-кодона с освобождение синтезированной полипептидной цепью, диссоциация рибосомы

Тема 3. Продукция рекомбинантных белков в прокариотах.

Описание механизмов ингибирования трансляции прокариот. Регуляция трансляции с помощью рибосвитчей Транскрипционные системы. Ингибиторы трансляции. Рибосвитчопосредованный контроль экспрессии генов. Структура trp оперона. Сохранение ростовых и метаболических функций при низких температурах. ppGpp и его функции. Методы селекции искусственных рибосвитчей. Система CRISPR-CAS

Тема 4. Продукция рекомбинантных белков в прокариотах.

Система трансляции и фолдинг. Молекулярные механизмы регуляции количества транскриптов и их трансляции с помощью РНК-связывающих белков. Секреция белков в Е.coli. РНК-связывающие белки (RBP). Rho - один из наиболее изученных RBPs в бактериях. Общий антитерминационный механизм контроля экспрессии генов. Регуляция трансляции с помощью RBP. Малые некодирующие РНК бактерий (sRNAs) - важнейшие посттранскрипционные регуляторы экспрессии генов. Молекулярные механизмы регуляторного потенциала sRNAs. Деградация РНК в бактериальных клетках. Поиск новых РНК-связывающих белков и изучение их функционала. Классификация типов рекомбинантных белков. Инсулин человека – первый пример рекомбинантного белка с функциональной активностью. Рекомбинантные белковые препараты на мировом рынке. Сравнение различных экспрессионных платформ. Преимущества и недостатки распространенных видов прокариот, используемых для получения рекомбинантных белков

Основные этапы получение рекомбинантных белков. Оптимизация генов для экспрессии. Карта экспрессионного вектора. Селективные маркеры.

Тема 5. Оптимизация экспрессии клонированных генов

Наиболее часто используемые типы промоторов для экспрессии рекомбинантных белков в E.coli. Промотор РНК полимеразы фага Т7, система экспресии рЕТ, базирующаяся на использовании сильного промотора фага Т7. Система промотора araBAD. Терминаторы транскрипции для экспрессионных систем. Генетические элементы трансляционной регуляции. СТАРТ и СТОП кодоны. Слитые белки с дополнительными N- или Сконцевыми пептидными последовательностями. Белковые линкеры. Сплайсинг белков интеины

Тема 6. Сложные для прокариотической экспрессии белки, преодоление проблем. Достижение повышенной продукции рекомбинантных белков. Фолдинг рекомбинантных белков. Система DnaK-DnaJ. Путь дисагрегации белков. Структурные дисульфидные

связи в рекомбинантных белках. Окислительный фолдинг белков в периплазме грамотрицательных бактерий. Тельца включения (IB; inclusion bodies). Продукция рекомбинантных белков в прокариотах. Секреция белков в Е.coli. Сложные для прокариотической экспрессии белки, преодоление проблем. Достижение повышенной продукции рекомбинантных белков.

Тема 7. Рекомбинантные бактерии для сельского хозяйства и медицины.

Рекомбинантные бактерии для сельского хозяйства и медицины Живые векторные системы. Понятие «food-grade» микроорганизма. История «одомашнивания» бактерий. Генная инженерия Lactobacillus и Lactococcus. Рекомбинантные бактерии для вакцинации и лечения

Тема 8. Эволюция бактериальных геномов, вертикальный и горизонтальный перенос. Эволюция бактериальных геномов, вертикальный и горизонтальный перенос. Транспозоны и плазмиды в эволюции бактериальных геномов. Общая схема строения бактериального генома. Транспозоны, механизмы транспозиции, функциональная нагруженность. Плазмиды, механизмы репликации и функциональная нагруженность. в эволюции бактериальных геномов. Примеры вовлеченности транспозонов и плазмид в эволюцию бактерий. Молекулярная эпидемиология: методы, цели и примеры практического применения. Какие задачи решает молекулярная эпидемиология. «молекулярных часов» Определение И типы молекулярных маркеров эпидемиологических целей. NGS для решения молекулярно-эпидемиологических задач

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в пятом семестре проводится в письменной форме по билетам. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=34291
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
 - в) План практических занятий по дисциплине.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

а) основная литература:

Егорова Т. А. Основы биотехнологии: [учебное пособие для вузов по специальности "Биология"] / Т. А. Егорова, С. М. Клунова, Е. А. Живухина. - 3-е изд., стер.. - М.:

Академия, 2006. - 207, [1] с.: ил. - (Высшее профессиональное образование. Педагогические специальности)

Щелкунов С. Н. Генетическая инженерия: [учебное пособие для студентов вузов по направлению "Биология" и специальностям "Биотехнология", "Биохимия", "Генетика", "Микробиология"] / С. Н. Щелкунов. - 3-е изд., испр. и доп.. - Новосибирск : Сиб. унив. изд-во, 2008. - 514 с.: ил. URL: http://sun.tsu.ru/limit/2016/000336542/000336542.pdf

Спирин А.С. Молекулярная биология: Структура рибосомы и биосинтез белка. М.: Высш. шк., 1986. - 303 с.

Шмид Р. Наглядная биотехнология и генетическая инженерия. Учебно-справочное пособие. М.: Лаборатория знаний, 2019. - 324 с.

б) дополнительная литература:

Рыбчин В.Н. Основы генетической инженерии. Учебное пособие. СПб.: Издательство СПбГТУ, 2002. - 522 с.

Патрушев Л.И. Искусственные генетические системы. Том1: Генная и белковая инженерия.

М.: Наука, 2004. - 530 с.

Комов В. П. Биохимия : [учебник для вузов по направлению 655500 "Биотехнология"] / В. П. Комов, В. Н. Шведова. - М. : Дрофа, 2004. - 638, [1] с.: ил. - (Высшее образование : современный учебник)

Molecular Genetics of Bacteria, 4th Edition (ASM Books) by Larry Snyder, Joseph E. Peters, Tina M. Henkin, Wendy Champness Publisher: ASM Press, 2013 – 707c.

The Physiology and Biochemistry of Prokaryotes 4th Edition by David White, James Drummond, Clay Fuqua. Oxford University Press, 2012 – 632c.

- в) ресурсы сети Интернет:
- открытые онлайн-курсы

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных:
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/

14. Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов, объектов для проведения практических занятий, объектов физической культуры и спорта с перечнем основного оборудования	Адрес (местоположение) учебных кабинетов, объектов для проведения практических занятий, объектов физической культуры и спорта (с указанием площади и номера помещения в соответствии с документами бюро технической инвентаризации)
Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Аудитория № 115 Оборудование: Графическая станция, процессор Intel i5, 16Гб оперативной памяти, монитор 24 дюйма Демонстрационный экран Мультимедиа-проектор Учебная мебель: рабочие места по количеству обучающихся (аудиторные столы, стулья); рабочее место преподавателя (стол, стул); аудиторная доска	634050, Томская область, г. Томск, пр- кт Ленина, 36, стр.7 (29 по паспорту БТИ) Площадь 40,9 м ²
Учебная аудитория для самостоятельной работы, индивидуальных консультаций. Аудитория № 121 ^A Учебная мебель: рабочие места по количеству обучающихся (аудиторные столы, стулья); рабочее место преподавателя (стол, стул)	634050, Томская область, г. Томск, пр- кт Ленина, 36, стр.7 (86 по паспорту БТИ) Площадь 23,8 м ²

15. Информация о разработчиках

Филипенко Максим Леонидович, канд. биол. наук, зав. лабораторией фармакогеномики ИХБФМ СО РАН