Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Математическая логика и теория алгоритмов

по направлению подготовки / специальности

10.05.01 Компьютерная безопасность

Направленность (профиль) подготовки/ специализация: **Анализ безопасности компьютерных систем**

Форма обучения **Очная**

Квалификация Специалист по защите информации

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП В.Н. Тренькаев

Председатель УМК С.П. Сущенко

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен на основании совокупности математических методов разрабатывать, обосновывать и реализовывать процедуры решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенний:

ИОПК-3.1 Демонстрирует навыки выполнения стандартных действий, решения типовых задач, формулируемых в рамках базовых математических дисциплин

ИОПК-3.2 Осуществляет применение основных понятий, фактов, концепций, принципов математики и информатики для решения задач профессиональной деятельности

ИОПК-3.3 Выявляет научную сущность проблем, возникающих в ходе профессиональной деятельности, и применяет соответствующий математический аппарат для их формализации, анализа и выработки решения

2. Задачи освоения дисциплины

- освоить основные понятия математической логики
- научиться анализировать математические доказательства средствами математической логики
- овладеть основными теоретическими положениями логики высказываний, логики предикатов, теории алгоритмов.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в «Модуль «Математика».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Четвертый семестр, зачет с оценкой

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Введение в математику», «Дискретная математика».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Логика высказываний
Формулы логики нулевого порядка. Эквивалентные преобразования. РКС.
КНФ, ДНФ, СКНФ, СДНФ
Логическое следование
Метод резолюций

Тема 2. Исчисление высказываний		
Дедуктика Клини. Выводимость.		
Свойства выводимости.		
Тема 3.Логика предикатов. Исчисление предикатов.		
Предикаты		
Язык логики первого порядка. Термы, формулы. Выполнимость, опровержимость,		
общезначимость.		
Эквивалентные преобразования.		
Общезначимость.		
Логическое следование.		
Метод резолюций.		
Аксиоматические системы. Исчисление предикатов.		
Тема 4. Выразимость. Элиминация кванторов.		
Тема 5. Рекурсивные функции.		

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, двух зачетов по лекционному материалу, самостоятельных работ по темам, выполнения домашних и индивидуальных заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

За практику Часть 1 (Тема 1,2) ставится оценка в зависимости от набранных баллов (ДЗ, СР, ответы у доски). Общее ДЗ (1 балл) ИДЗ (1 балл за задачу) СР на занятии (1 балл за задачу) Ответ у доски (1 балл)	44%-58% - оценка 3, 59%-75% - оценка 4, 76%-100% - оценка 5. Например, при максимуме 36 баллов, 16-21 балл - оценка 3, 22-27 баллов - оценка 4, 28-36 баллов оценка 5
Теоретическая Часть 1. 1 (Тема 1,2) В середине семестра	Оценивается по 5 бальной системе в зависимости от полноты ответа на вопросы билета
За практику Часть 2 (Темы 3 ,4) ставится оценка в зависимости от набранных баллов баллов (ДЗ, СР, ответы у доски, КР). Общее ДЗ (1 балл) ИДЗ (1 балл за задачу) СР на занятии (1 балл за задачу) Ответ у доски (1 балл) КР - 16 баллов	44%-58% - оценка 3, 59%-75% - оценка 4, 76%-100% - оценка 5.
Теоретическая Часть 2. (Темы 3,4)	Оценивается по 5 бальной системе в
В конце семестра	зависимости от полноты ответа на вопросы билета

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой в четвертом семестре проводится по следующей схеме: итоговая оценка выставляется как среднее арифметическое всех оценок за практику и теорию. При спорной оценке задаётся дополнительный вопрос.

Обе теоретические части сдаются в устной форме, с предварительной письменной подготовкой по билетам. Билет теоретической части содержит два вопроса (часть 1) и четыре вопроса (часть 2). Продолжительность зачета с оценкой 1 час.

Результаты зачета с оценкой определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Примерный состав билетов по теории. Часть 1.

1	Дать определения: язык нулевого порядка, формула логики высказываний, ранг формулы. Сформулировать законы алгебры логики высказываний, доказать з-ны де Моргана. Дать определение СДНФ, СКНФ. Рассказать алгоритмы приведения к СДНФ, СКНФ.	Пусть $\alpha^{\sigma} = \begin{cases} \alpha, & ecnu \sigma = 1 \\ - & \Pi$ усть α формула, все буквы которой содержатся среди букв $A_1, A_2,, A_k$, и φ некоторая интерпретация. Тогда $A_1^{\varphi(A_1)}, A_2^{\varphi(A_2)},, A_k^{\varphi(A_k)} \mid -\alpha^{\varphi(\alpha)}.$
2	Дать определения: контрарная пара литер, элементарная конъюнкция, дизъюнкция, ДНФ, КНФ. Рассказать алгоритм приведения к ДНФ и к КНФ. Доказать критерий тождественной истинности формулы через КНФ (критерий ТЛ через ДНФ).	Доказать, что тавтология является выводимой формулой (в дедуктике Клини).
3	Дать определения: интерпретация языка нулевого порядка, продолжение интерпретации на множество формул логики высказываний. ТИ, ТЛ, выполнимость, эквивалентность на языке интерпретаций. Выполнимое (невыполнимое) множество формул, модель множества формул.	Доказать теорему о семантической полноте дедуктики Клини: для любой формулы α множества формул Γ выполняется $\Gamma \! \mid = \! \alpha \implies \! \Gamma \! \mid = \! \alpha$

Примерный состав билетов по теории Часть 2.

 1.3. Доказать, что интерпретация (алгебраическая система) (ў,=,S,0) допускает элиминацию кванторов. 1.4. Расскажите алгоритм приведения формулы языка 1 порядка к Сколемовской нормальной форме, приведите пример.
2.3. Сформулируйте теорему о подстановке терма, свободного для переменной в формуле. Докажите общезначимость формулы " $xa(x)$ ® $a(t)$, где терм t свободен для переменной x в формуле $a(x)$. 2.4. Докажите по определению равносильность $\overline{\$xA(x)}$ ε " $x\overline{A(x)}$

Список определений.

- 1. Предикат задан на множестве. Операции над предикатами.
- 2. Сигнатура, терм, формула языка первого порядка. Атомарная (элементарная) формула. Язык 1 порядка. Булева комбинация атомарных формул.
- 3. Свободная переменная, связанная переменная. Замкнутая формула. ∃ замыкание формулы. ∀ замыкание формулы.
- 4. Интерпретация языка 1 порядка.

- 5. Оценка в интерпретации.
- 6. Значение терма в интерпретации на оценке.
- 7. Истинностное значение формулы в интерпретации на оценке.
- 8. Формула выполнимая в интерпретации, формула выполнимая, формула опровержимая в интерпретации, формула опровержимая.
- 9. Формула общезначимая (тождественно истинная), формула противоречивая (тождественно ложная).
- 10. Равносильные (эквивалентные) формулы языка 1 порядка.
- 11. Пренексная (предваренная) нормальная форма формулы языка 1 порядка.
- 12. Сколемовская нормальная форма языка 1 порядка.
- 13. Формула является логическим следствием множества формул (пустого множества).
- 14. Множество формул языка 1 порядка является выполнимым (совместным, непротиворечивым), невыполнимым.
- 15. Терм свободен для переменной в формуле.
- 16. Литерал. Элементарный дизьюнкт. Унификация переменных дизьюнкта.
- 17. Говорят, что задана аксиоматическая теория языка 1 порядка.
- 18. Вывод формулы из множества формул в аксиоматической теории языка 1 порядка.
- 19. Исчисление предикатов.
- 20. Интерпретация языка 1 порядка с заданной сигнатурой допускает элиминацию кванторов. Список алгоритмов
 - 1. Доказательство логического следования методом резолюций.
 - 2. Доказательство общезначимости методом резолюций.
 - 3. Приведение формулы к Сколемовской нормальной форме.
 - 4. Элиминация кванторов для $\langle \breve{y}, =, S, 0 \rangle$.
 - 5. Элиминация кванторов для $\langle \ddot{y}, =, <, S \rangle$.
 - 6. Элиминация кванторов для $\langle z, =, < \rangle$.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в LMS IDO
- https://moodle.tsu.ru/course/view.php?id=8893
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

Основная.

- 1. Глухов М.М., Козлитин О.А., Шапошников В.А., Шишков А.Б. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов. СПб: Лань, 2021
 - 2. Верещагин Н., Шень А.. Языки и исчисления. МЦНМО. 2017. 240 с.
- 3. В.А. Романович. Лекции по математической логике. 4.1,2. Томский государственный университет. 2015, 408 с.

Дополнительная.

- 4. Игошин В.И. Математическая логика и теория алгоритмов. Академия. 2008, 448 с.
- 5. Игошин В.И. Задачи и упражнения по математической логике и теории алгоритмов. 2007, 304 с.

в) ресурсы сети Интернет:

- http://e-science.sources.ru/ портал естественных наук
- http://www.coursera.org/ сайт обучающих курсов ведущих вузов мира
- <u>https://ocw.mit.edu/index.htm</u> сайт открытых курсов MIT

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Галанова Наталия Юрьевна, к.ф.-м.н., доцент каф. общей математики, ММФ, ТГУ