Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Математический анализ

по направлению подготовки / специальности

15.03.06 Мехатроника и робототехника

Направленность (профиль) подготовки / специализация: **Промышленная и специальная робототехника**

Форма обучения **Очная**

Квалификация **Инженер, инженер-разработчик**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП Е.И. Борзенко

Председатель УМК В.А. Скрипняк

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-2 Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения физикоматематический аппарат и современные компьютерные технологии.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РООПК-2.1 Знает методику выявления естественнонаучной сущности проблем, возникающих в ходе профессиональной деятельности, и методику привлечения физикоматематического аппарата и современные компьютерных технологий для их решения

РООПК-2.2 Умеет выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности и привлекать для их решения физикоматематический аппарат и современные компьютерные технологии

2. Задачи освоения дисциплины

- Изучение основ математического анализа.
- Формирование у студентов навыков работы с вычислительным аппаратом математического анализа и освоение технологий его применения для решения научных и практических задач.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

Второй семестр, экзамен

Третий семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 16 з.е., 576 часов, из которых:

- -лекции: 154 ч.
- -практические занятия: 154 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. ВЕЩЕСТВЕННЫЕ ЧИСЛА

1. Множество вещественных чисел и его упорядочение. 2. Арифметические действия над вещественными числами.

Тема 2. ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

- 1. Понятие функции. 2. Важнейшие классы функций Тема 3. ТЕОРИЯ ПРЕДЕЛОВ.
 - 1. Предел функции 2. Теоремы о пределах. 3. Принцип сходимости Тема 4. НЕПРЕРЫВНЫЕ ФУНКЦИИ ОДНОЙ

ПЕРЕМЕННОЙ

- 1. Непрерывность (и разрывы) функции. 2. Свойства непрерывных функций. Тема 5. ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ.
 - 1. Производная и ее вычисление. 2. Дифференциал. 3. Основные теоремы дифференциального исчисления. 4. Исследование функций с помощью производных

Тема 6. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

1. Основные понятия. 2. Непрерывные функции. 3. Производные и дифференциалы функций нескольких переменных. 4. Неявная функция.

Тема 7. ПЕРВООБРАЗНАЯ ФУНКЦИЯ (НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ)

1. Неопределенный интеграл и простейшие приемы его вычисления. 2. Интегрирование рациональных выражений. 3. Интегрирование выражений сводящихся к рациональным.

Тема 8. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

1. Определение и условия существования определенного интеграла. 2. Свойства определенных интегралов. 3. Вычисление и преобразование определенных интегралов.

Тема 9. ГЕОМЕТРИЧЕСКИЕ И МЕХАНИЧЕСКИЕ ПРИЛОЖЕНИЯ ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ

1. Площади и объемы. 2. Длина дуги. 3. Вычисление механических и физических величин

Тема 10. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

1. Несобственные интегралы с бесконечными пределами. 2. Несобственные интегралы от неограниченных функций. 3. Преобразование и вычисление несобственных интегралов

Тема 11. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

1. Криволинейные интегралы первого типа. 2. Криволинейные интегралы второго типа

Тема 12. КРАТНЫЕ ИНТЕГРАЛЫ.

1. Двойные интегралы. 2. Поверхностные интегралы. 3. Тройные интегралы. 4. Элементы теории поля.

Тема 13. ЧИСЛОВЫЕ РЯДЫ. ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ.

1. Основные понятия. 2. Сходимость рядов. 3. Степенные ряды и ряды многочленов. 4. Ряды Фурье

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения практических заданий в классе, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Экзамен во втором семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Экзамен в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

http://lms.tsu.ru/course/view.php?id=24632

б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Г. М. Фихтенгольц Основы математического анализа Т. 1, 2 НАУКА М.-1968г.
- 2. Ильин в. А., Позняк Э. Г. Основы математического анализа: В 2-х ч. Часть І: Учеб.: Для вузов. 7-е изд. М.: ФИЗМАТЛИТ, 2005. 648 с. (Курс высшей математики и математической физики). ISBN 5-9221-0536-1.
- 3. Будаев В. Д., Якубсон М. Я. Б 90 Математический анализ. Функции одной переменной: Учебник. СПб.: Издательство «Лань», 2012. 544 с.: ил. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1186-3
- б) дополнительная литература:
- 1. Тер-Крикоров А.М., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов. 3-е изд., исправл. М.: ФИЗМАТ- ЛИТ, 2001. 672 с. ISBN 5- 9221-0008-4.
- 2.. Кудрявцев Л. Д. К 88 Курс математического анализа (в двух томах): Учебник студентов университетов и втузов. М.: Высш, школа, 1981, т. І. 687 е., ил. 3 Ильин В.А и др. Математический анализ. Начальный курс/ В.А. Ильин, В.А. Садовничий, Бл. Х. Сендов. Под редакцией А.Н. Тихонова. 2-е изд.,

перераб. М.:Изд-во МГУ, 1985.-662 с.

- в) ресурсы сети Интернет:
- Общероссийская Сеть КонсультантПлюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

а) лицензионное и свободно распространяемое программное обеспечение:

- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - <u>— 96C IPRbooks http://www.iprbookshop.ru/</u>

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Нариманов Р.К., канд. ф.-м.н., доцент, кафедра прикладной аэромеханики, доцент