Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Оценочные материалы по дисциплине

Гетерогенный катализ

по направлению подготовки

04.03.01 Химия

Направленность (профиль) подготовки: **Химия**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП В.В. Шелковников

Председатель УМК В.В. Шелковников

Томск - 2024

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений.
- ОПК-2 Способен проводить с соблюдением норм техники безопасности химический эксперимент, включая синтез, анализ, изучение структуры и свойств веществ и материалов, исследование процессов с их участием.
- ПК-1 Способен выбирать и использовать технические средства и методы испытаний для решения исследовательских задач химической направленности, поставленных специалистом более высокой квалификации.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 1.1 Систематизирует и анализирует результаты химических экспериментов, наблюдений, измерений, а также результаты расчетов свойств веществ и материалов.
- ИОПК 1.2 Предлагает интерпретацию результатов собственных экспериментов и расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии.
- ИОПК 1.3 Формулирует заключения и выводы по результатам анализа литературных данных, собственных экспериментальных и расчетно-теоретических работ химической направленности.
- ИОПК 2.2 Проводит синтез веществ и материалов разной природы с использованием имеющихся методик.
- ИОПК 2.3 Проводит стандартные операции для определения химического и фазового состава веществ и материалов на их основе.
- ИОПК 2.4 Проводит исследования свойств веществ и материалов с использованием серийного научного оборудования.
- ИПК 1.1 Планирует отдельные стадии исследования при наличии общего плана HИР.
- ИПК 1.3 Выбирает технические средства и методы испытаний (из набора имеющихся) для решения поставленных задач НИР.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- проверочные работы;
- решение задач;
- индивидуальные задания;
- кейс-задачи

Проверочные работы (ИОПК 1.1, ИОПК 1.2, ИОПК 2.2)

Проверочная работа используется как средство промежуточного контроля остаточных знаний и умений студентов после завершения изучения материала тематического раздела на лекционных и практических занятиях, состоящее из нескольких вопросов или заданий, в том числе в форме теста.

Примеры проверочных работ

Проверочная работа №1, В I

- 1. Гетерогенный катализ это явление ускорения скорости химической реакции в присутствии веществ-катализаторов, при котором...
 - А) катализатор и реагирующие вещества находятся в разных фазах.
 - Б) твердые тела катализируют реакции молекул в газовых смесях.
 - В) катализатор и реагирующие вещества находятся в одной фазе.

- Г) твердые тела катализируют реакции молекул в газовых смесях или растворах.
- Д) реакция начинается (инициируется) на поверхности твердого катализатора и далее продолжается в газовой или жидкой фазе за счет вылета с поверхности активных промежуточных частиц.

Определением чего являются остальные выражения?

- 2. Изменяет ли катализатор состав равновесной газовой смеси?
- А) Да.
- Б) Нет.
- В) При высоком давлении.
- Г) При высокой температуре.
- 3. Металлический никель успешно катализирует процесс гидрирования двойных связей в ненасыщенных углеводородах типа пропилена и бутена:

$$C_3H_6 + H_2 \leftrightarrow C_3H_8$$
,

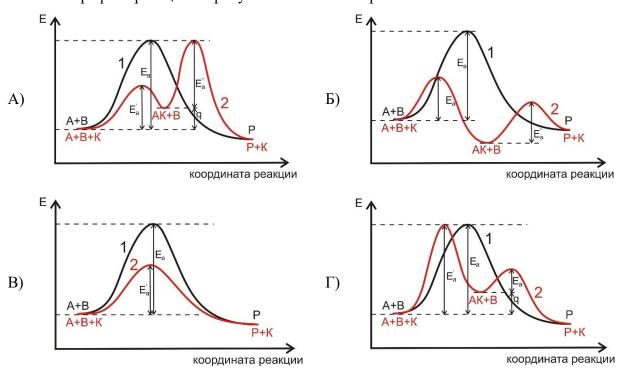
$$C_4H_8 + H_2 \leftrightarrow C_4H_{10}$$

Может ли этот металл катализировать процесс дегидрирования алканов типа пропана и бутана?

- А) Да.
- Б) Нет.

Почему?

4. На каком из профилей потенциальной энергии вдоль координаты реакции


$$A + B \rightarrow P$$

изображен реакционный путь каталитической реакции, протекающей по стадийному механизму с образованием одного стабильного промежуточного продукта:

$$A + K \rightarrow AK$$
,

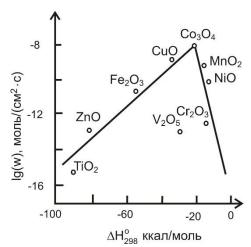
$$AK + B \rightarrow P + K$$
.

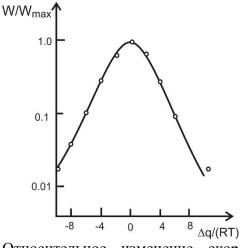
- 1 профиль реакции без катализатора;
- 2 профиль реакции в присутствии катализатора

- 5. Принцип действия гетерогенного катализатора заключается в том, что
- А) катализатор увеличивает площадь контакта реагентов за счет развитой удельной поверхности.
- Б) катализатор вступает в промежуточное химическое взаимодействие с реагентами, направляя реакцию по пути с наименьшим энергетическим барьером.

- В) катализатор координирует реагенты на поверхности определённым образом, облегчая их взаимодействие.
 - 6. Что является мерой каталитической активности катализатора?
- А). Количество исходного реагента, которое данное количество катализатора способно переработать в единицу времени при заданных составе реакционной среды и температуре.
- Б) Доля исходного вещества, превращенного в продукты реакции, по отношению к его исходному количеству.
- В) Доля превращенного исходного реагента, израсходованная на образование данного продукта в соответствии со стехиометрией.
 - 7. Дифференциальная селективность это ...
- A). это доля превращенного исходного реагента, израсходованная на образование данного продукта в соответствии со стехиометрией, т.е. $S = \frac{n_{\it p} C_{\it p}}{\sum n_{\it i} C_{\it i}}.$
- Б) отношение общего количества определенного продукта, образовавшегося при конечном изменении степени превращения исходного вещества, к теоретически возможному, т.е. $S = \frac{C_{\it P}}{n_{\it i}/n_{\it A} \cdot C_{\it Ao} \cdot X_{\it A}} \, .$
- В) отношение скорости накопления соответствующего продукта к суммарной скорости превращения соответствующего вещества по всем направлениям, протекающим на данном катализаторе в тех же условия, т.е. $S = \frac{w_P}{\sum w_i}$.

Проверочная работа №4, І В


- 1. Применение теории кристаллического поля и теории поля лиганда к явлениям адсорбции и катализа основано на...
- А) изменении природы лиганда в координационной сфере катиона металла при взаимодействии с реагентом.
- Б) их рассмотрении как процессов комплексообразования с увеличением числа лигандов.
 - В) изменении степени окисления катиона металла при взаимодействии с реагентом.
- 2. Основное отличие теории поля лигандов и теории кристаллического поля состоит в...
 - А) использовании представления о расщеплении d-орбиталей в поле лигандов;
 - Б) учете строения лигандов;
 - В) порядке заполнения d-орбиталей в сильном и слабом полях лигандов.
- 3. На основе анализа представленных в таблице данных укажите, по какому механизму протекает окисление водорода на оксиде ванадия V_2O_5 .


Таблица – Сопоставление скорости каталитической реакции окисления водорода на оксидах металлов со скоростями стадий взаимодействия с катализатором водорода и кислорода.

Оксид	Т, К	Процесс	P _{H2} ,	Po2,	Скорость	E,	Порядок по	
			кПа	кПа	процесса w·10 ³ ,	кДж/моль	H_2	O_2
					cm^3/m^2 ·мин			
Fe ₂ O ₃	498	Катализ	0,83	26,66	1,36	80	0,7	0
		Восст-ние	0,83		1,50	88	0,7	-

		Окисление	-	0,83	1,50	15	-	0
Co ₃ O ₄	335	Катализ	0,83	26,66	1,27	54	0,7	0
		Восст-ние	0,83		1,30	67	0,8	-
		Окисление	_	0,83	1,30	21-25	_	0
ZnO	573	Катализ	0,83	26,66	0,25	92	0,7	0
		Восст-ние	0,83		0,26	84	0,8	-
		Окисление	-	0,83	0,26	-	-	0
V_2O_5	713	Катализ	0,83	26,66	1,24	88	1	0
		Восст-ние	0,83		0,7	96	1	-
		Окисление	-	0,83	0,7	50	_	0

- А) Реакция протекает по слитному механизму.
- Б) Реакция протекает по стадийному механизму.
- Г) Реакция протекает параллельно по стадийному и слитному механизмам.
- 4. Механизм Ленгмюра-Хиншельвуда представляет...
- А) слитный механизм каталитического окисления на оксидных катализаторах.
- Б) стадийный механизм каталитического окисления на оксидных катализаторах.
- В) схему каталитического окисления на оксидных катализаторах, описывающую слитное или стадийное протекание процесса в зависимости от условий его проведения.
- 5. В чем физический смысл зависимости энергии активации или скорости реакции от различных параметров, включающих энергии связи/теплоты реакции в виде «вулканообразной» кривой, наблюдаемой различными авторами?

Зависимость каталитической активности оксидов в окислении водорода при 150°С от энергии образования промежуточных соединений по В.А. Ройтеру и Г.И. Голдцу в предположении образования низших оксидов

Относительное изменение скорости реакции при отклонении энергии связи q от оптимальной, полученное на основе соотношения Бренстеда-Поляни, $\alpha_1 = \alpha_2 = 0.5$

- А) Скорость реакции увеличивается с уменьшением энергии связи/теплоты реакции.
- Б) Максимальная скорость каталитической реакции достигается при оптимальной энергии связи реагентов с катализатором.
 - В) Скорость реакции увеличивается с ростом энергии связи/теплоты реакции.
 - 6. Уравнение Бренстеда-Поляни-Семенова представляет...
- А) теоретическое уравнение, связывающее энергию активации (кинетический параметр) и энтальпию (термодинамический параметр) для серии реакций, протекающих по одному и тому же механизму.

- Б) корреляционное соотношение, связывающее энергию активации (кинетический параметр) и энтальпию (термодинамический параметр) для серии реакций, протекающих по одному и тому же механизму.
- В) теоретическое уравнение, связывающее энергию активации (кинетический параметр) и энтальпию (термодинамический параметр) широкого круга реакций.
- В) корреляционное соотношение, связывающее энергию активации (кинетический параметр) и энтальпию (термодинамический параметр) широкого круга реакций.
- 7. Как зависит скорость реакции для большинства реакций глубокого окисления на оксидах от энергии связи кислорода в катализаторе?
 - А) Увеличивается с ростом энергии связи кислорода в катализаторе.
 - Б) Увеличивается с уменьшением энергии связи кислорода в катализаторе.
 - В) Не зависит от энергии связи кислорода в катализаторе.
 - 8. Селективное (парциальное) окисление это...
- А) процесс окисления с образованием соединений в промежуточных состояниях окисления.
- Б) процесс окисления с образованием конечных, термодинамический устойчивых соединений.

Критерии оценивания:

Оценка «отлично» выставляется при выполнении >80% от объема теста;

Оценка «хорошо» выставляется при выполнении 66-80% от объема теста;

Оценка «удовлетворительно» выставляется при выполнении 57-65% от объема теста;

Оценка «удовлетворительно» выставляется при выполнении <57% от объема теста.

Решение задач (ИОПК 1.1, ИОПК 1.2, ИОПК 2.2)

Для промежуточного контроля студентов программой дисциплины предусмотрено выполнение индивидуального задания в виде решения задач на анализ кинетических уравнений, диффузионных режимов и др.

Примеры задач:

Задача 1

В рамках кинетической модели Ленгмюра напишите стадии и выведите уравнение для скорости парофазной мономолекулярной реакции дегидратации этанола

$C_2H_5OH \rightarrow C_2H_2 + H_2O$,

протекающей на алюмооксидном катализаторе при температурах 230–400°С. Проанализируйте, как изменится полученное выражение для скорости реакции для следующих условий:

- а) высокая температура реакции, адсорбция всех веществ мала;
- b) умеренная температура реакции, сильная адсорбция этанола, адсорбция остальных веществ мала;
- с) низкая температура реакции, сильная адсорбция этанола и воды.

Для каждого случая указать общий порядок и частные порядки реакций по компонентам, а также эффективную энергию активации E (в нотации энергии активации поверхностной реакции E_a и энтальпии адсорбции компонентов ΔH_i).

Критерии оценивания:

Оценка «зачтено» выставляется студенту, если выполнено более 60 % от домашней работы.

Оценка «не зачтено» выставляется студенту, если выполнено менее 60 % от домашней работы.

Индивидуальные задания (ИОПК 1.1-1.3, ИОПК 2.3, ИОПК 2.4, ИПК 1.1, ИПК 1.3)

Индивидуальные задания в форме реферата и доклада используется как средства привить студентам начальные навыки исследовательской работы, а в случае доклада – и навыков публичного выступления. Реферат и доклад являются продуктами самостоятельной работы студента (СРС), представляющими собой краткое изложение в письменном (реферат) или устном (доклад) виде полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемого вопроса, приводит различные точки зрения, а также при необходимости собственное понимание проблемы.

Примеры тем реферата

Реферат «Методы исследования гетерогенных катализаторов» по выбору студента

- рентгенофазовый анализ (РФА);
- РФЭС;
- ИК спектроскопия;
- КР спектроскопия (спектроскопия Рамана);
- ПЭМ, дифракция медленных электронов, ЭДА;
- СЭМ, ЭДА;
- ЯМР;
- Электронная спектроскопия или спектроскопия в УФ- и видимом диапазоне;
- Мёссбауэровская спектроскопия;
- ТПР и ТПД методы;
- адсорбционные методы

Объем реферата 25-35 страниц

Структура реферата

- -Введение;
- Физическая основа метода;
- Назначение метода;
- Возможности и ограничения для исследования гетерогенных катализаторов;
- -Заключение;
- Список литературы.

Неотъемлемым продуктом учебной деятельности в рамках практического занятия по теме «Методы исследования гетерогенных катализаторов», проводимого в форме конференции, является сводный конспект. Конспект представляет краткую запись основных характеристик, рассмотренных в рамках занятия методов (физическая основа, что позволяет определить, возможности и ограничения для исследования гетерогенных катализаторов).

Элемент конспекта, составляемого студентами

Метод	Рентгенофазовый анализ (РФА)
Физическая основа	
метода.	
Что позволяет	
определить?	
Возможности и	
ограничения метода	
для исследования	
гетерогенных	
катализаторов.	
Метод	Рентгеновская фотоэлектронная спектроскопия (РФЭС)

Физическая основа	
метода.	
Что позволяет	
определить?	
Возможности и	
ограничения метода	
для исследования	
гетерогенных	
катализаторов.	

Критерии оценивания:

Оценка «отлично» (более 80% от баллов данного блока контроля) выставляется при полном раскрытии и анализе определенной научной (учебно-исследовательской) темы реферата и/или доклада, аргументированных и правильных ответах на дополнительные вопросы;

Оценка «хорошо» (66-80% от баллов данного блока контроля) выставляется за анализ определенной научной (учебно-исследовательской) задачи в рамках темы реферата и/или доклада, однако опущены ключевые моменты либо студент испытывает некоторые затруднения при ответах на дополнительные вопросы;

Оценка «удовлетворительно» (57-65% от баллов данного блока контроля) выставляется в случае поверхностного раскрытия и анализа определенной научной (учебно-исследовательской) темы реферата и/или доклада, наличии фактических ошибок; ;

Оценка «удовлетворительно» выставляется при выполнении <57% от объема теста.

Кейс-задача ИОПК 1.1-1.3, ИОПК 2.2-2.4, ИПК 1.1, ИПК 1.3)

В рамках практических занятий программой предусмотрено использование методик проблемно-ориентированного обучения, в частности, групповых кейс-задач – проблемных заданий, в которых обучающимся предлагают осмыслить реальную профессионально-ориентированную ситуацию, необходимую для решения данной проблемы. Студенты самостоятельно формулируют цель, находят и собирает информацию, в том числе с использованием баз данных Scopus, Web of Science и E-library, анализирует ее, выдвигают гипотезы, ищут варианты решения проблемы, формулируют выводы, обосновывают оптимальное решение ситуации.

Пример

Семинар 1. Методы исследования каталитических свойств

Петров Петр Иванович является аспирантом первого года обучения и работает младшим научным сотрудником в Лаборатории каталитических исследований. Научная работа Петрова, выполняемая под руководством профессора N, посвящена разработке эффективных гетерогенных катализаторов селективного окисления пропана (окислительного дегидрирования) и пропилена газообразным кислородом в ценные продукты.

Реакции окислительного дегидрирования пропана до пропилена и окисления пропилена до акролеина являются экзотермическими, протекают на оксидах переходных металлов при температурах 450–550°C и 250–300°C, соответственно, и могут быть осложнены реакциями глубокого окисления.

В рамках выполнения научной работы по теме диссертации Петрову были поставлены задачи определения наиболее подходящего состава катализатора из серии образцов, синтезированных сотрудниками группы приготовления гетерогенных катализаторов, т.е. провести сравнение каталитических свойств образцов (каталитическую активность, конверсию, селективность). Для катализатора оптимального состава

необходимо провести подробные кинетические исследования на примере реакции окисления пропана.

В распоряжении Петрова имеются каталитические установки с реакторами различного типа (статические, проточные), позволяющие проводить исследования каталитических свойств в различных условиях. Аспиранту необходимо составить и обосновать подробный план предполагаемых исследований с указанием всех условий и операций.

Критерии оценивания по видам оценочных средств текущего контроля

Форма контроля	Максимальное количество баллов			
Посещение занятий	32			
Работа на практических занятиях (4 занятия)	80			
Проверочные работы (5 работ)	75			
Индивидуальные задания (2 реферата, 1 доклад, решение задач)	83			
Суммарный рейтинг курса	270			

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзамен в седьмом семестре проводится в письменной форме в виде теста (ИОПК 1.1-1.3, ИОПК 2.2). Продолжительность экзамена 2 часа. Вопросы в экзаменационном тесте аналогичны вопросам в контрольных работах при промежуточном контроле после завершения изучения материала тематического раздела на лекциях и практических занятиях.

Примеры вопросов:

1. На основе анализа представленных в таблице данных укажите, по какому механизму протекает окисление водорода на оксиде ванадия V_2O_5 .

Таблица – Сопоставление скорости каталитической реакции окисления водорода на оксидах металлов со скоростями стадий взаимодействия с катализатором водорода и кислорода.

Оксид	Т, К	Процесс	P _{H2} ,	P _{O2} ,	Скорость	E,	Порядок по	
	,	1 ,	кПа	кПа	процесса $w \cdot 10^3$, $cm^3/m^2 \cdot мин$	кДж/моль	H_2	O_2
Fe ₂ O ₃	498	Катализ	0,83	26,66	1,36	80	0,7	0
1213		Восст-ние	0,83	,	1,50	88	0,7	_
		Окисление	-	0,83	1,50	15	-	0
Co ₃ O ₄	335	Катализ	0,83	26,66	1,27	54	0,7	0
		Восст-ние	0,83		1,30	67	0,8	-
		Окисление	-	0,83	1,30	21-25	-	0
ZnO	573	Катализ	0,83	26,66	0,25	92	0,7	0
		Восст-ние	0,83		0,26	84	0,8	-
		Окисление	-	0,83	0,26	-	_	0
V_2O_5	713	Катализ	0,83	26,66	1,24	88	1	0
		Восст-ние	0,83		0,7	96	1	-
		Окисление	-	0,83	0,7	50	-	0

- А) Реакция протекает по слитному механизму.
- Б) Реакция протекает по стадийному механизму Марса- Ван Кревелена.
- В) Реакция протекает по механизму Ленгмюра-Хиншельвуда.
- Г) Реакция протекает параллельно по стадийному и слитному механизмам.
- 2. Как связаны селективность реакций парциального окисления на оксидах и энергия связи кислорода в катализаторе?

- А) Селективность увеличивается с ростом энергии связи кислорода в катализаторе.
- Б) Селективность увеличивается с уменьшением энергии связи кислорода в катализаторе.
 - В) Энергии связи кислорода в катализаторе не влияет на селективность.
- Г) Наличие слабосвязанного кислорода в катализаторе существенно снижает селективность реакции, однако в его отсутствие решающее значение имеет характер взаимодействия окисляемого вещества с катализатором.
- 3. В чем заключается основное различие механизмов мономолекулярной каталитической реакции $A \to B$, протекающей по стадийному механизму с образованием одного стабильного промежуточного продукта, в случае ленгмюровской и неленгмюровской кинетики? Выведенные на их основе кинетические уравнения имеют следующий вид:

$$w = k \frac{b_{A}p_{A}}{1 + b_{A}p_{A} + b_{B}p_{B}}$$
 уравнение Ленгмюра-Хиншельвуда
$$w = k \frac{p_{A}}{1 + \frac{p_{B}}{K} + b_{B}p_{B}}$$
 уравнение, выведенное для неленгмюровской кинетики

- А) Предположение о квазистационарном/стационарном состоянии.
- Б) Предположение о лимитирующей стадии.
- В) Предположение о наличие компонентов, реагирующих непосредственно из газовой фазы.
 - Г) Предположение о слабой адсорбции продукта.

Для допуска к экзамену необходимо получить оценку текущего контроля знаний и набрать не менее 50% баллов от текущего контроля при обязательном выполнении основных заданий. Вес экзамена в итоговой оценке составляет не более 20%.

Итоговая оценка по дисциплине определяется по сумме баллов текущего контроля знаний и экзамена. Соответствие баллов экзаменационной оценке:

>80% от суммарного рейтинга курса – «отлично»;

66-80% от суммарного рейтинга курса - «хорошо»;

57-65% от суммарного рейтинга курса – «удовлетворительно»;

<57% от суммарного рейтинга курса – «неудовлетворительно».

Информация о разработчиках

Харламова Тамара Сергеевна, канд. хим. наук, кафедра физической и коллоидной химии Национального исследовательского Томского государственного университета, доцент.