Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Электроника

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки / специализация: радиоэлектронные системы передачи информации Форма обучения

Очная

Квалификация **Инженер**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и применять соответствующий физикоматематический аппарат для их формализации, анализа и принятия решения.
- ОПК-3 Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий.
- ПК-3 Способен формулировать математические модели процес-сов и явлений, происходящих в радиоэлектронных системах и на их основе проводить компьютерное моделирование и оптимизацию.
- ПК-5 Способен формировать и реализовывать программы макетных и экспериментальных исследований.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.1 Имеет представление об историческом и современном состоянии области профессиональной деятельности
- ИОПК 2.2 Выделяет научную сущность и проблемные места в решаемых задачах профессиональной деятельности
- ИОПК 2.3 Владеет приемами и методами решения проблемных задач профессиональной деятельности
- ИОПК 3.1 Знает основные законы функционирования и процессы, происходящие в радиоэлектронных системах и комплексах
- ИОПК 3.2 Анализирует, моделирует, прогнозирует поведение радиоэлектронных систем и комплексов
- ИОПК 3.3 Владеет навыками работы на современном измерительном и диагностическом оборудовании
- ИПК 3.1 Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах
- ИПК 3.2 Разрабатывает математические модели исследуемых физических процессов, приборов, схем и электронных систем
 - ИПК 5.1 Формирует программу проведения экспериментальных исследований
- ИПК 5.2 Обосновывает программу эксперимента, обрабатывает результаты эксперимента, оценивает погрешности экспериментальных результатов
- ИПК 5.3 Владеет: методикой и техникой проведения экспериментальных исследований и измерений параметров и характеристик изделий электронной техники; методами анализа результатов измерений

2. Задачи освоения дисциплины

- Освоить физические основы работы полупроводниковых приборов, и познакомиться с контактными явлениями на границе металл-полупроводник, электронно-дырочными переходами, биполярными и полевыми транзисторами, оптоэлектронными полупроводниковыми приборами.
- Научиться применять полученные знания в области полупроводниковой электроники для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Седьмой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Математический анализ», «Физика», «Дифференциальные уравнения», «Электродинамика», «Радиоэлектроника», «Микропроцессоры».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 28 ч.
- -самостоятельная работа обучающегося: 6 ч.
 - в том числе практическая подготовка: 6 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение

Краткий исторический обзор развития полупроводниковой электроники, роль твердотельных приборов и устройств на их основе в науке и технике. Предмет и содержание курса. Основные понятия физики полупроводников (п/п). Зонная структура п/п. Носители заряда в п/п. Статистика электронов и дырок в п/п. Концентрация носителей заряда и положение уровня Ферми. Концентрация электронов и дырок в собственном п/п. Концентрация электронов и дырок в примесном п/п. Проводимость п/п. Токи в п/п. Неравновесные носители заряда. Уравнение непрерывности.

Тема 2. Контактные явления на границе металл-полупроводник

Термоэлектронная эмиссия из металла и полупроводника, термодинамическая работа выхода. Контакт металл — полупроводник, контактная разность потенциалов. Запорные и антизапорные слои. Распределение потенциала в области пространственного заряда (ОПЗ) запорного слоя Шоттки. Ширина и емкость запорного слоя Шоттки, диодная теория выпрямления. Эквивалентная схема диода с барьером Шоттки. Функциональные возможности диодов с барьером Шоттки.

Тема 3. Электронно-дырочные переходы

Образование электронно-дырочного перехода (р-п-перехода), контактная разность потенциалов. Распределение потенциала в ОПЗ р-п-перехода. Ширина и емкость ОПЗ. Диодная теория выпрямления полупроводникового диода. Влияние рекомбинации и генерации носителей в ОПЗ р-п-перехода на вид вольт-амперных характеристик. Частотные свойства полупроводникового диода, эквивалентная схема. Переходные р-п-переходом. Электрический процессы диодах c пробой р-п-перехода. Функциональные возможности полупроводниковых диодов: выпрямительные диоды, стабилитроны, стабисторы, импульсные детекторы СВЧ-диапазона, диоды, параметрические диоды, варикапы, шумовой диод.

Тема 4. Диоды для усиления и генерации СВЧ-мощности

Туннельный диод, его вольт-амперная характеристика и частотные свойства. Диод Ганна, вольт-амперная характеристика, формирование домена, возможные режимы

работы. Мощность и коэффициент полезного действия диодов Ганна. Лавинно-пролетный диод.

Тема 5. Биполярные транзисторы

Структура и принцип действия биполярного транзистора (БПТ) в качестве усилителя мощности. Формулы Молла—Эберса. Статические характеристики и коэффициенты передачи тока в различных схемах включения. Дифференциальные параметры БПТ в схеме с общей базой. БПТ в схеме с общим эмиттером. Эффект Эрли. Выражения для переменных токов в транзисторе, его эквивалентная схема. Частотная зависимость коэффициента передачи тока, предельная частота усиления, граничная частота (частота отсечки) коэффициента передачи тока.

Тема 6. Полевые транзисторы

Эффект поля. Типы и устройство полевых транзисторов. Принцип действия и статические характеристики МДП-транзистора. Малосигнальные параметры МДП-транзистора. Эквивалентная схема и быстродействие МДП-транзистора. Ячейка памяти на основе МДП-транзистора. Энергонезависимые элементы памяти на основе МДП-транзистора. Принцип действия и статические характеристики полевого транзистора с р-п-переходом в качестве затвора, его эквивалентная схема и частотные свойства. СВЧ полевые транзисторы с барьером Шоттки.

Тема 7. Оптоэлектронные полупроводниковые приборы

Фотодиод с p-n-переходом: принцип действия, составляющие фототока, спектральная характеристика фотодиода. Светодиод: принцип действия, спектр излучения светодиода, внешний квантовый выход и мощность излучения.

Тема 8. Интегральные микросхемы

Понятие об интегральной микросхеме (ИМС). Классификация интегральных микросхем. Степень интеграции. Полупроводниковые биполярные ИМС. Топология интегрального биполярного транзистора. МДП – интегральные микросхемы.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в седьмом семестре проводится в письменной форме по билетам. Билет содержит теоретический вопрос, на который студент должен дать развернутый ответ, и два дополнительных вопроса. Продолжительность зачета 1,5 часа.

Примерный перечень теоретических вопросов:

- 1. Термоэлектронная эмиссия из металла и полупроводника, термодинамическая работа выхода. Контакт металл полупроводник, контактная разность потенциалов. Запорные и антизапорные слои.
- 2. Распределение потенциала в области пространственного заряда (ОПЗ) запорного слоя Шоттки.
 - 3. Ширина и емкость запорного слоя Шоттки.
 - 4. Диодная теория выпрямления диода с барьером Шоттки.
 - 5. Эквивалентная схема диода с барьером Шоттки.

- 6. Образование электронно-дырочного перехода (р-n-перехода), контактная разность потенциалов.
 - 7. Распределение потенциала в ОПЗ и ширина ОПЗ резкого р-п-перехода.
 - 8. Распределение потенциала в ОПЗ и ширина ОПЗ плавного р-п-перехода.
 - 9. Емкость р-п-перехода.
 - 10. Диодная теория выпрямления полупроводникового диода с р-п-переходом.
- 11. Влияние рекомбинации и генерации носителей в ОПЗ p-n-перехода на вид вольт-амперных характеристик.
 - 12. Эквивалентная схема диода с р-п-переходом.
 - 13. Переходные процессы в диодах с р-п-переходом.
 - 14. Тепловой пробой р-п-перехода.
 - 15. Лавинный и туннельный пробои р-п-перехода.
 - 16. Принцип действия и основные характеристики выпрямительных диодов.
- 17. Принцип действия и основные характеристики стабилитронов, стабисторов и импульсных диодов.
- 18. Принцип действия и основные характеристики детекторов СВЧ-диапазона, варикапов.
- 19. Принцип действия и основные характеристики шумовых диодов и диодов с накоплением заряда.
 - 20. Туннельный диод, его вольт-амперная характеристика и частотные свойства.
- 21. Диод Ганна, вольт-амперная характеристика, формирование домена, возможные режимы работы. Мощность и коэффициент полезного действия диодов Ганна.
- 22. Структура и принцип действия биполярного транзистора в качестве усилителя мощности.
 - 23. Выражения для постоянных токов в транзисторе.
 - 24. Коэффициент передачи тока на низкой частоте в схеме с общей базой.
- 25. Статические характеристики и коэффициенты передачи тока в различных схемах включения. (Расписать схему с общей базой; по схеме с общим эмиттером изобразить входные и выходные характеристики, и связь коэффициентов передачи тока.)
- 26. Эквивалентная схема транзистора. Частотная зависимость коэффициента передачи тока, предельная частота усиления, граничная частота (частота отсечки) коэффициента передачи тока.
 - 27. Принцип действия и статические характеристики МДП транзистора.
- 28. Влияние типа канала на ВАХ МДП транзисторов. Эффект смещения подложки. Малосигнальные параметры. Эквивалентная схема и быстродействие МДП-транзистора.
- 29. Ячейка памяти на основе МДП-транзистора. Энергонезависимые элементы памяти на основе МДП-транзистора.
- 30. Принцип действия и статические характеристики полевого транзистора с затвором в виде p-n-перехода. СВЧ полевые транзисторы с барьером Шоттки.
 - 31. Принцип действия и основные характеристики фотодиодов.
 - 32. Принцип действия и основные характеристики светодиодов.

Примеры дополнительных вопросов:

- 1. Поясните механизм формирования и структуру (т.е. расположение и типы зарядов) запорного слоя Шоттки.
- 2. Какой вид имеют зависимости ширины запорного слоя и его ёмкости от напряжения?
- 3. Какие элементы включает эквивалентная схема диода Шоттки при малом сигнале и при наличии прямого и обратного постоянных смещений и как они соединены?
 - 4. Механизм формирования р-п-перехода.
 - 5. Дайте определения резкого и плавного р-п-переходов.

- 6. Какой вид имеют зависимости ширины и ёмкости области пространственного заряда (ОПЗ) от прямого и обратного напряжений для ступенчатого и плавного p—n-переходов?
- 7. Поясните физический смысл инжекционной и рекомбинационной составляющих прямого тока через p—n-переход. Как они зависят от напряжения?
- 8. Поясните физический смысл диффузионной (ток экстракции) и генерационной составляющих обратного тока через p—n-переход. Как они зависят от напряжения?
- 9. Какие элементы включает эквивалентная схема диода с p—n-переходом на малом переменном сигнале. Какие элементы останутся при большом обратном напряжении?
- 10. Поясните физический смысл барьерной и диффузионной емкостей диода с р-п-переходом.
- 11. Какими физическими процессами обусловлен переходный процесс при переключении диода из пропускного в запорное состояние?
- 12. При выполнении каких условий полупроводниковый диод может выпрямлять переменный ток?
- 13. В чем преимущества использования структур с барьером Шоттки для создания импульсных диодов и детекторов СВЧ-диапазона?
- 14. Кратко охарактеризуйте туннельный диод: требования к полупроводникам, принцип работы.
- 15. Какой физический процесс обуславливает появление на ВАХ диода Ганна участка с отрицательной дифференциальной проводимостью.
 - 16. Перечислите возможные режимы работы диода Ганна.
- 17. Поясните принцип усиления напряжения биполярным транзистором в схеме с общей базой.
 - 18. Что такое эффект Эрли?
- 19. Дайте определение частоты отсечки биполярного транзистора. Какими процессами в транзисторе она определяется?
- 20. Кратко опишите принцип работы и структуру полевого транзистора с p-n-переходом в качестве затвора и поясните механизм усиления переменного сигнала.
- 21. Кратко опишите принцип работы и структуру МДП транзистора с p—n-переходом в качестве затвора и поясните механизм усиления переменного сигнала.
 - 22. Типы МДП транзисторов.
 - 23. Качественно опишите процессы, проходящие при различных типах пробоя.
 - 24. Качественно опишите принцип работы варикапа.
 - 25. Качественно опишите принцип работы стабилитрона и импульсного диода.
- 26. Качественно опишите принцип работы МДП-транзистора с изолированным затвором.
- 27. Качественно опишите принцип работы элементов памяти на основе МНОП полевых транзисторов
- 28. Качественно опишите принцип работы элементов памяти на основе МОП транзисторов с плавающим затвором.
 - 29. Качественно опишите принцип работы фотодиода.
 - 30. Качественно опишите принцип работы светодиода.

Результаты промежуточной аттестации по дисциплине характеризуются оценками «зачтено» или «не зачтено» в соответствии с таблицей.

Компетенция	Индикатор компетенции	Критерии оценивания результатов обучения	
		Не	Зачтено
ОПК-2. Способен выявлять естественнонауч ную сущность проблем, возникающих в ходе профессиональн ой деятельности, и применять соответствующи й физико- математический аппарат для их формализации, анализа и принятия решения.	ИОПК-2.1. Имеет представление об историческом и современном состоянии области профессиональной деятельности. ИОПК-2.2.Выделяет научную сущность и проблемные места в решаемых задачах профессиональной деятельности. ИОПК-2.3. Владеет приемами и методами решения проблемных задач профессиональной деятельности.	Не владеет элементарными знаниями в области физики полупроводниковой электроники в развитии науки и техники, о современных тенденциях развития полупроводниковой электроники. Не способен использовать полупроводниковые приборы для решения профессиональных задач, преобразования, передачи и хранения информации. Не владеет элементарными приемами исследования характеристик полупроводниковых приборов.	Применяет элементарные знания в области физики полупроводниковой электроники в развитии науки и техники, о современных тенденциях развития полупроводниковой электроники. Использует полупроводниковые приборы для решения профессиональных задач, преобразования, передачи и хранения информации. Применяет элементарные приемы исследования характеристик полупроводниковых приборов.
ОПК-3. Способен к логическому мышлению, обобщению, прогнозировани ю, постановке исследовательск их задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическо м и технологическо м оборудовании, используемом для решения различных научнотехнических задач в области радиоэлектронн ой техники и информационнокоммуникацион ных технологий	ИОПК-3.1. Знает основные законы функционирования и процессы, происходящие в радиоэлектронных системах и комплексах. ИОПК-3.2. Анализирует, моделирует, прогнозирует поведение радиоэлектронных систем и комплексов. ИОПК-3.3. Владеет навыками работы на современном измерительном и диагностическом оборудовании.	Не владеет элементарными знаниями об основных законах функционирования полупроводниковой элементной базы в радиоэлектронных системах и комплексах. Не владеет методами моделирования и анализа характеристик полупроводниковой элементной базы в радиоэлектронных системах и комплексах. Не способен использовать современное измерительное и диагностическое оборудование для исследования характеристик полупроводниковых приборов.	Применяет элементарные знания об основных законах функционирования полупроводниковой элементной базы в радиоэлектронных системах и комплексах. Применяет методы моделирования и анализа характеристик полупроводниковой элементной базы в радиоэлектронных системах и комплексах. Использует современное измерительное и диагностическое оборудование для исследования характеристик полупроводниковых приборов.
ПК-3. Способен	ИПК-3.1. Использует фундаментальные знания о	Не способен использовать фундаментальные знания о	Использует фундаментальные знания о

формулировать	физической природе и физических явлениях	физической природе и физических явлениях в	физической природе и физических явлениях в
модели	происходящих элементах и	полупроводниковых	полупроводниковых
процессов и	объектах	приборах для анализа	приборах для анализа
явлений,	радиоэлектронных систем	работы радиоэлектронных	работы радиоэлектронных
происходящих в	и комплексах.	систем и комплексов.	систем и комплексов.
радиоэлектронн	ИПК-3.2. Разрабатывает	Не способен	Разрабатывает
ых системах и	математические модели	разрабатывать	элементарные схемы и
на их основе	исследуемых физических	элементарные схемы и	электронные системы на
проводить	процессов, приборов, схем	электронные системы на	основе полупроводниковых
компьютерное	и электронных систем.	основе полупроводниковых	приборов.
моделирование	1	приборов.	1
и оптимизацию.		1	
ПК-5.	ИПК-5.1. Формирует	Не способен	Формулирует цель и задачи
Способенформи	программу проведения	формулировать цель и	экспериментальных
ровать и	экспериментальных	задачи экспериментальных	исследований
реализовывать	исследований.	исследований	полупроводниковых
программы	ИПК-5.2. Обосновывает	полупроводниковых	приборов, подобрать
макетных и	программу эксперимента,	приборов, подобрать	необходимые методы для
эксперименталь	обрабатывает результаты	необходимые методы для	решения задач
ных	эксперимента, оценивает	решения задач	экспериментальных
исследований	погрешности	экспериментальных	исследований.
	экспериментальных	исследований.	Проводит
	результатов.	Не способен проводить	экспериментальное
	ИПК-5.3. Владеет:	экспериментальное	исследование и анализ
	методикой и техникой	исследование и анализ	характеристик
	проведения	характеристик	полупроводниковых
	экспериментальных	полупроводниковых	приборов.
	исследований и измерений	приборов.	Применяет знания о
	параметров и	Не владеет знаниями о	методах экспериментальных
	характеристик изделий	методах экспериментальных	исследований
	электронной техники;	исследований	полупроводниковых
	методами анализа	полупроводниковых	приборов.
	результатов измерений	приборов.	

Для получения оценки «зачтено» необходимо выполнить все задания текущего контроля и ответить на вопросы письменного зачета. Пропуски занятий не допускаются, в противном случае студенту при сдаче зачета в письменном виде задаются 2 дополнительных вопроса за каждый пропуск.

Оценка «зачтено» соответствует оценке «удовлетворительно» и выше пятибалльной системы оценок. Студент после освоения дисциплины должен знать основные типы полупроводниковых приборов, их функциональные возможности и области применения в радиоэлектронных системах и комплексах, уметь качественно объяснить и математически описать физические процессы, лежащие в основе действия полупроводниковых приборов различного назначения, владеть навыками экспериментального определения и расчетов параметров и характеристик основных полупроводниковых приборов.

Первая часть письменного зачета содержит 1 вопрос, на который студент должен дать развернутый ответ, проверяет ИОПК-2.1, ИОПК-2.2, ИОПК-2.3, ИОПК-3.1, ИОПК-3.2 и ИОПК-3.3. Ответы на вопросы первой части даются путем выбора из списка предложенных.

Вторая часть содержит два вопроса, проверяющих ИПК-3.1, ИПК-3.2, ИПК-5.1, ИПК-5.2 и ИПК-5.3. Ответы на вопросы второй части предполагают анализ основных выражений и характеристик полупроводниковых приборов.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=14314
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (п. 9, 10).
- в) Методические указания по проведению практических работ: https://moodle.tsu.ru/course/view.php?id=14314

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Пасынков В. В. Полупроводниковые приборы / Пасынков В. В., Чиркин Л. К. 9-е изд. Санкт-Петербург: Лань, 2021. 480 с. Электронный ресурс: ЭБС Лань (доступно в локальной сети ТГУ). URL: https://e.lanbook.com/book/167773
- 2. Смирнов Ю. А. Основы микроэлектроники и микропроцессорной техники : учебное пособие / Ю. А. Смирнов, С. В. Соколов, Е. В. Титов. Изд. 2-е, испр. Санкт-Петербург [и др.] : Лань, 2021. 495 с. Электронный ресурс: ЭБС Лань (доступно в локальной сети ТГУ). URL: https://e.lanbook.com/book/168550
- 3. Гермогенов В.П. Материалы, структуры и приборы полупроводниковой оптоэлектроники: учебное пособие: для студентов старших курсов вузов / В.П. Гермогенов; Нац. исслед. Том. гос. ун-т. Томск: Издательский Дом Томского государственного университета, 2015. 271 с. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000511917
- 4. Гуртов В.А., Осауленко Р.Н. Физика твердого тела для инженеров [Электрон. ресурс]: электронный учебный курс на сайте кафедры физики твердого тела ПетрГУ. Электрон. дан. Петрозаводск: ПетрГУ, 2007. http://solidstate.karelia.ru/p/tutorial/ftt/index.htm
- 5. Дорохин М.В., Здоровейщев А.В. Диод Шоттки на основе GaAs: технология получения и диагностика: Учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2013. 75 с. https://e.lanbook.com/book/153364
 - б) дополнительная литература:
- 1. Гаман В.И. Физика полупроводниковых приборов: Учебное пособие. 2-е изд. Томск: Изд-во НТЛ, 2000.-426 с.
- 2. Малянов С.В., Калыгина В.М. Сборник задач по физике биполярных полупроводниковых приборов: Учебное пособие. Томск: Изд-во НТЛ, 2008. 112 с
 - в) ресурсы сети Интернет:
- 1. Гермогенов В.П., Вячистая Ю.В. Полупроводниковая электроника [Электрон. ресурс]: электронный учебный курс на базе виртуальной обучающей среды MOODLE Электрон. дан. Томск: ТГУ, 2014. URL: http://moodle.tsu.ru/course/view.php?id=1821
- 2. Гермогенов В.П., Вячистая Ю.В. Полупроводниковая оптоэлектроника [Электрон. ресурс]: электронный учебный курс на базе виртуальной обучающей среды MOODLE Электрон. дан. Томск: ТГУ, 2014. URL: http://moodle.tsu.ru/course/view.php?id=1825 доступ для обучающихся в ТГУ.
- 3. Полупроводниковые приборы (материалы клуба 155): электронный ресурс. .URL: http://www.club155.ru/stintro
- 4. Полупроводниковые и оптоэлектронные приборы (Методичкус): электронный ресурс. URL: https://3ys.ru/poluprovodnikovye-i-optoelektronnye-pribory.html

- 5. Демонстрационные модели свойств полупроводников и полупроводниковых приборов (Purdue University, Gerhard Klimeck, Benjamin P Haley): электронный ресурс. URL: https://nanohub.org/resources/6842
- 6. Светодиоды (иллюстрации Ф. Шуберта): электронный ресурс. URL: https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office 2010 Russian Academic Open, Microsoft Windows Professional 7 Academic Open (Лицензия №47729022 от 26.11.2010);
- пакет программного обеспечения РТС MathCad Education (Договор поставки №7193 от 14.10.2015;
- пакет SMath Studio для решения задач на практических занятиях (в свободном доступе);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- eLIBRARY.RU: Научная электронная библиотека. URL: https://elibrary.ru/defaultx.asp?
- Электронно-библиотечная система «Лань» (доступ из сети НИ ТГУ). URL: http://e.lanbook.com/
- Scopus: база данных цитирования издательства Elsevier (доступ из сети НИ $T\Gamma Y$).- URL: http://www.scopus.com/
- Web of Science: база данных цитирования компании Clarivate Analytics (доступ из сети НИ ТГУ). URL: http://webofknowledge.com/WOS
 - в) профессиональные базы данных (при наличии):
- Физика и техника полупроводников (научный журнал PAH): электронная версия. URL: https://journals.ioffe.ru/journals/2
- Новые полупроводниковые материалы. Характеристики и свойства: база данных ФТИ им. А.Ф. Иоффе PAH. URL: http://www.matprop.ru/
 - Справочник по электронным компонентам. URL: http://kazus.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Освоение дисциплины обеспечено наличием учебной лаборатории полупроводниковой электроники на кафедре полупроводниковой электроники НИ ТГУ, где имеются маркерная доска, мультимедийный проектор с экраном, 9 компьютерных рабочих для обработки результатов И моделирования характеристик полупроводниковых приборов, а также приборы и установки для измерения характеристик полупроводниковых приборов: установка для измерения вольт-амперных характеристик полупроводниковых диодов на базе источника-измерителя Keithley 2611B с компьютером; цифровой измеритель индуктивности, емкости и сопротивления Е7-12; лабораторная установка для изучения переходных процессов в полупроводниковых диодах, включающая генератор прямоугольных импульсов Г5-54 и осциллограф АКИП-4122/1V; характериограф TR-4805 для наблюдения вольт-амперных характеристик полупроводниковых диодов; лабораторная установка для измерения характеристик

диодов Ганна; характериограф для наблюдения характеристик транзисторов Л2-100 ТЕКО; измеритель параметров полупроводниковых приборов ИППП-1 с управляющим компьютером.

Учебно-наглядные пособия: таблица фундаментальных физических постоянных, Периодическая система элементов Д.И. Менделеева, демонстрационные наборы полупроводниковых приборов.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Алмаев Алексей Викторович, кандидат физ.-мат. наук, кафедра полупроводниковой электроники НИ ТГУ, доцент.