Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Оценочные материалы по дисциплине

Масс-спектрометрия

по направлению подготовки

04.04.01 Химия

Направленность (профиль) подготовки: **Трансляционные химические и биомедицинские технологии**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП И.А. Курзина

Председатель УМК В.В. Шелковников

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

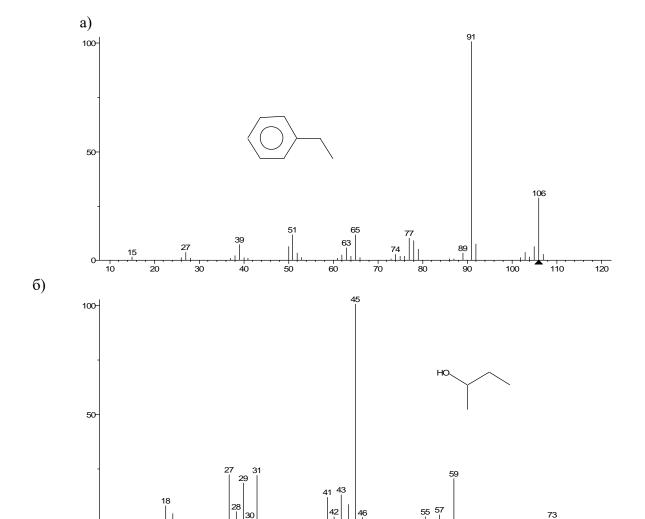
ПК-1 Способен планировать работу и выбирать адекватные методы решения научноисследовательских и/или производственных задач в выбранной области химии, химической технологии или смежных с химией науках.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК 1.1 Разрабатывает стратегию научных исследований, составляет общий план и детальные планы отдельных стадий
- ИПК 1.2 Выбирает экспериментальные и расчетно-теоретические методы решения поставленной задачи, используя достижения современной химической науки, и исходя из имеющихся, материальных, информационных и временных ресурсов
- ИПК 1.3 Использует современное физико-химическое оборудование для получения и интерпретации достоверных результатов исследования в выбранной области химии, химической технологии или смежных с химией науках, применяя взаимодополняющие методы исследования. Проводит поиск, анализирует и обобщает результаты патентного поиска по тематике исследовательской работы

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:


- устный опрос;
- расчётные задачи;
- отчет по лабораторной работе;
- контрольная работа.

Устный опрос (ИПК-1.1, ИПК-1.2)

- 1. Перечислите основные конструктивные элементы масс-спектрометра.
- 2. Дайте определение терминам: разрешающая способность, скорость сканирования, диапазон измеряемых масс ионов.
 - 3. От чего зависит интенсивность пика на масс-спектре?
 - 4. Как отражается изотопный состав элементов на масс-спектре вещества?
- 5. Какие методы ионизации применимы для анализа термически стабильных низкомолекулярных, до 1000 а.е.м., органических соединений?
- 6. Какие методы ионизации используют для анализа термически нестабильных и высокомолекулярных органических соединений?
- 7. Опишите принципиальную схему источника ионов с химической ионизацией при атмосферном давлении.
- 8. В чем заключаются преимущества и ограничения метода ионизации электронным ударом?

Расчетные задачи (ИПК-1.1, ИПК-1.2)

- 1. Определите брутто-формулу соединения по интенсивности изотопных пиков на масс-спектре:
 - a) *m/z* 170 (100%), 171 (13);
 - б) 59 (100), 60 (4);
 - в) 50 (100), 51 (3), 52 (31);
 - г) 214 (51), 216 (100), 218 (49).
- 2. Исходя из масс-спектров, предложите возможные пути фрагментации молекулярного иона:

- 3. Пики каких ионов следует ожидать на масс-спектре следующих соединений (подтвердите свои предположения схемами соответствующих реакций фрагментации):
 - а) Бензойная кислота;
 - б) *н*-Октан;
 - в) Хинолин.

Критерии оценивания:

- устный опрос, решение задач 0-6 (суммарно 30 баллов)
- 0 студент не отвечает на вопросы, не участвует в решении задач;
- 1 студент делает попытки отвечать на вопросы, делает много ошибок;
- 2-4 студент редко участвует в обсуждении задач, делает попытки находить ответы на задаваемые вопросы;
- 5-6 студент активно участвует в обсуждении задач, предлагает решения, в большинстве случаев дает правильные ответы на поставленные вопросы.

Отчет по лабораторной работе (ИПК-1.1, ИПК-1.2, ИПК-1.3, ИПК-3.1, ИПК-3.2) Темы лабораторных работ:

- 1. Устройство масс-спектрометра. Источники ионизации ESI, APCI.
- 2. Получение масс-спектров разных классов органических соединений.
- 3. Установление строения органических соединений. Примеры структурного анализа органических соединений по масс-спектру низкого разрешения.

Отчет по лабораторной работе состоит из описания хода работ, расчетов (при необходимости) и выводов.

Критерии оценивания:

- отчеты по лабораторной работе 0-4 балла (суммарно 20 баллов)
- 0–1 балл отчет сдан значительно позже даты выполнения, значительные ошибки в оформлении и выполнении, которые не были исправлены;
- 2–3 балла отчет сдан позже даты выполнения, есть незначительные ошибки в оформлении, которые самостоятельно исправлены;
- 4 балла лабораторная работа сдана в срок, оформлена грамотно и самостоятельно, практически без ошибок.

Контрольная работа проводится в письменной форме, содержит 5 теоретических вопросов и оценивается суммарно в 20 баллов.

Критерии оценивания:

- контрольная работа 0-20 баллов
- 0-5 баллов задания выполнены частично, присутствуют значительные ошибки в решенных заданиях, подход к решению задач выбран неверно;
- 5–14 баллов задания выполнены более чем наполовину, могут быть незначительные ошибки, прослеживается правильный подход к решению задач;
- 15–20 баллов все задания выполнены, могут быть незначительные ошибки, в целом правильно и грамотно сформулирован подход к решению задач.

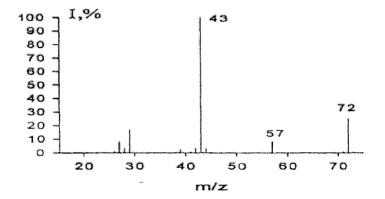
3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет в третьем семестре проводится в письменной форме по билетам.

Билет состоит из двух частей и оценивается суммарно в 30 баллов.

Продолжительность зачета 1,5 часа.

Первая часть содержит один вопрос, проверяющий ИПК-1.1, ИПК-1.2. Ответ на вопрос первой части даётся в развёрнутой форме.

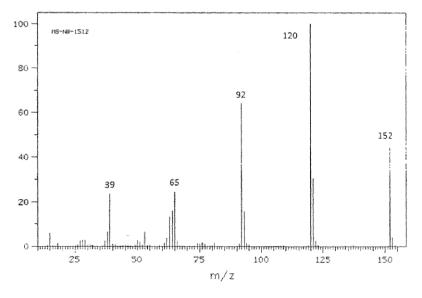

Вторая часть содержит два задания, проверяющее ИПК-1.1, ИПК-1.2, ИПК-1.3, ИПК-3.1, ИПК-3.2 и оформленные в виде практического задания. Приводится решение задачи и краткая интерпретация полученных результатов.

Примеры билетов

Билет 1.

Вопрос 1. Основные конструктивные элементы масс-спектрометра. Разрешающая способность масс-спектрометра. Понятие чувствительности и предела детектирования. Динамический диапазон детектирования. Точность измерения масс.

Задача 1. Идентифицируйте соединение, масс-спектр электронной ионизации которого приведен ниже:


particular contract	m/z	I, %	m/z	I, %
CAMPING CO.	15	4,31	42	3,12
A SHADOW SHADOW	26	1,12	43	100
-	27	8,34	44	2,23
ministration	28	3,25	57	8,87
on the same of the same	29	17,6	71	1,29
and the same of	39	2,78	72	25,0
distance of the last	41	1,03	73	1,11

Задача 2. Рассчитать минимальную разрешающую способность масс-спектрометра для 100% разрешения триплета N_2 , CO, C_2H_4 , считая известными точные значения масс: m(H) = 1,00782, m(C) = 12,00000, m(N) = 14,00307, m(O) = 15,99492.

Билет 2.

Вопрос 1. Основные правила и подходы к интерпретации масс-спектров. Стабильность ионов и нейтральных частиц. Правило выброса максимального алкильного радикала.

Задача 1. Интерпретируйте фрагментацию метилсалицилата, приводящую к появлению в масс-спектре электронной ионизации пиков, указанных на рисунке ниже. Составьте схему фрагментации.

Задача 2. Все нижеперечисленные ионы: (а) N_{2^+} , (б) CO_+ , (в) CH_2N_+ , (г) $C_2H_{4^+}$ имеют одну и ту же номинальную массу M=28 и не могут быть разрешены обычным спектрометром низкого разрешения. Тем не менее, измеряя относительную интенсивность пика M+1, эти ионы можно различить. Укажите ионный фрагмент, у которого относительная интенсивность пика M+1 равна 1,15%. Используйте изотопный состав элементов:

H:	¹ H: 99,985%	² H: 0,015%	
C:	¹² C: 98,9%	¹³ C: 1,1%	
N:	¹⁴ N: 99,634%	15N: 0,366%	
O:	¹⁶ O: 99,762%	¹⁷ O: 0,038%	¹⁸ O: 0,20%

Результаты дисциплины определяются оценками «зачет», «незачет».

Итоговая оценка учитывает результаты зачета и текущего контроля: суммарный рейтинг курса -100 баллов.

Соответствие баллов оценке:

66 – 100 баллов – «зачет»

0-65 баллов — «незачет»

Информация о разработчиках

Селихова Наталья Юрьевна, канд. хим. наук, доцент, кафедра природных соединений, фармацевтической и медицинской химии, ХФ ТГУ.