Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Схемотехника аналоговых электронных устройств

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки / специализация: Радиоэлектронные системы передачи информации

Форма обучения Очная

Квалификация **Инженер**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-3 Способен к логическому мышлению, обобщению, прогнозированию, постановке исследовательских задач и выбору путей их достижения, освоению работы на современном измерительном, диагностическом и технологическом оборудовании, используемом для решения различных научно-технических задач в области радиоэлектронной техники и информационно-коммуникационных технологий.
- ОПК-8 Способен использовать современные программные и инструментальные средства компьютерного моделирования для решения различных исследовательских и профессиональных задач.
- ПК-1 Способен осуществлять анализ состояния научно-технической проблемы, определять цели и выполнять постановку задач проектирования. Способен осуществлять проектирование конструкций радиоэлектронных систем и комплексов с применением современных САПР.
- ПК-2 Способен проводить научно-исследовательские и опытно--конструкторские разработки функциональных приборов и устройств радиоэлектроники.
- ПК-4 Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 3.1 Знает основные законы функционирования и процессы, происходящие в радиоэлектронных системах и комплексах
- ИОПК 3.2 Анализирует, моделирует, прогнозирует поведение радиоэлектронных систем и комплексов
- ИОПК 3.3 Владеет навыками работы на современном измерительном и диагностическом оборудовании
- ИОПК 8.1 Использует современные информационные технологии и программное обеспечение при решении задач профессиональной деятельности
- ИОПК 8.2 Использует компьютерные системы поиска, хранения, обработки, анализа и представления информации
- ИОПК 8.3 Соблюдает требования информационной безопасности при использовании современных информационных технологий и программного обеспечения
- ИПК 1.1 Использует современные САПР для разработки радиоэлектронных устройств комплексов передачи информации
- ИПК 1.2 Использует нормативные и справочные данные при разработке проектноконструкторской документации
 - ИПК 1.3 Владеет навыками разработки технических заданий на проектирование
- ИПК 2.1 Осуществляет целенаправленный сбор и анализ исходных данных для разработки структурных, функциональных и принципиальных схем
- ИПК 2.2 Использует современных пакеты прикладных программ для разработки структурных, функциональных и принципиальных схем радиоэлектронных устройств комплексов передачи информации
- ИПК 2.3 Оформляет результаты разработки структурных, функциональных и принципиальные схемы радиоэлектронных устройств по принятым стандартам
- ИПК 4.1 Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации
- ИПК 4.2 Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров
- ИПК 4.3 Применяет стандартные прикладные программные средства при проведении модельных экспериментов

2. Задачи освоения дисциплины

- Освоить принципы работы устройств усиления и преобразования аналоговых сигналов, способы построения схем типовых аналоговых устройств, области применения аналоговых устройств в радиоэлектронной аппаратуре различного назначения.
- Научиться проводить анализ электрических схем аналоговых устройств различными методами, в том числе с помощью компьютера.
- Сформировать навыки применения программных средств схемотехнического моделирования для анализа электрических схем аналоговых устройств.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Пятый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Б1.У.О.03 «Физика», Б1.У.О.02 «Математический анализ», Б1.У.В.05 «Введение в специальность», Б1.У.О.08 «Дифференциальные уравнения», Б1.У.О.06 «Линейная алгебра», Б1.П.О.03 «Материалы и компоненты радиоэлектроники», Б1.О.О.01 «Радиоэлектроника».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

-лекции: 30 ч.

-лабораторные: 60 ч.

-семинар: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение

<u>Краткое содержание темы.</u> Общие сведения об аналоговых электронных устройствах (АЭУ). Определение аналоговых электронных устройств. Принципы построения АЭУ, особенности функционирования и область применения. Внешние параметры и характеристики аналоговых электронных устройств, требования, предъявляемые к устройствам различного назначения. Основные задачи проектирования и применения аналоговых электронных схем и функциональных устройств.

Тема 2. Физические основы работы полупроводниковых приборов

Краткое содержание темы. Полупроводниковый диод. Характеристики диода с р-п-переходом. Уравнения диода. Цепи постоянного тока с диодами. Биполярные транзисторы (БТ). Характеристики и параметры биполярного транзистора. Характеристики и режимы работы транзистора с ОЭ. Уравнения транзистора. Рабочая точка БТ. Линейный и нелинейный режимы работы БТ. Малосигнальные параметры БТ. Эквивалентная схема БТ. Использование схемы составного транзистора (схема Дарлингтона). Полевые транзисторы (ПТ). ПТ с управляющим р-п переходом. Характеристики и параметры ПТ с

управляющим р-п переходом. МОП-транзисторы. Характеристики и параметры МОП-транзисторов.

Тема 3. Усилители на БТ и ПТ

Краткое содержание темы. Принцип электронного усиления. Усилительный каскад и его обобщенная схема. Схема простейшего резистивного усилителя на БТ, назначение элементов схемы. Графический метод анализа схемы: нагрузочная характеристика, рабочая точка. Типовые резисторные усилители на биполярном транзисторе. Усилитель с ОЭ и фиксированным потенциалом базы. Усилитель с ОЭ и фиксированным потенциалом базы. Назначение элементов и анализ схемы. Эквивалентная схема усилителя в области средних и высоких частот. Расчет основных параметров усилителя. Эквивалентная схема усилителя в области низких частот. Расчет комплексного коэффициента усиления. Резисторный усилитель по схеме с общей базой. Назначение элементов и работа схемы. Эквивалентная схема усилителя. Расчет основных параметров усилителя с ОБ. Анализ влияния температурных и других дестабилизирующих факторов на режим работы каскада на постоянном токе. Схемы усилителей на ПТ расчет и характеристики.

Тема 4. Анализ работы базовых каскадов в режиме малого сигнала

<u>Краткое содержание темы.</u> Аналитический метод анализа усилителя в режиме малого сигнала. Метод эквивалентных схем для расчета основных параметров усилительного каскада. Малосигнальные параметры биполярных и полевых транзисторов. Анализ характеристик базовых усилительных каскадов в частотной и временной областях при различных способах включения транзистора в схему.

Тема 5. Обратные связи в трактах усиления

<u>Краткое содержание темы.</u> Структурная схема усилителя с обратной связью, расчет коэффициента усиления. Положительная и отрицательная обратные связи. Частотнозависимая обратная связь. Устойчивость усилителей с обратной связью. Влияние отрицательной обратной связи на параметры усилителя: полосу усиления, входное и выходное сопротивления, шумы усилителя, величину нелинейных искажений сигнала. Применение отрицательной обратной связи для стабилизации режима транзистора по постоянному току.

Тема 6. Многокаскадные усилители

<u>Краткое содержание темы.</u> Двухкаскадный усилитель ОЭ-ОБ с непосредственной межкаскадной связью. Двухкаскадный усилитель ОЭ-ОК с непосредственной межкаскадной связью. Фазоинвертор на эмиттерно-связанных транзисторах. Емкостная межкаскадная связь в усилителях.

Тема 7. Бестрансформаторные усилители мощности (УМ).

<u>Краткое содержание темы.</u> Режимы работы усилителей мощности. Бестрансформаторные усилители мощности на биполярных транзисторах. Эмиттерный повторитель как усилитель мощности. Комплементарный эмиттерный повторитель. Комплементарный эмиттерный повторители в режиме класса В. Комплементарный эмиттерный повторители в режиме класса АВ. Расчет передаточной характеристики комплементарного повторителя.

Тема 8. Базовые схемные конфигурации аналоговых микросхем и усилителей постоянного тока

<u>Краткое содержание темы.</u> Источники (генераторы) стабильного тока. Токовое зеркало. Дифференциальный усилитель. Простой дифференциальный усилитель. Дифференциальный усилитель с источником тока в цепи эмиттеров транзисторов. Умножители сигналов на ДУ с источником тока.

Тема 9. Интегральный операционный усилитель (ОУ) и его свойства

<u>Краткое содержание темы.</u> Общие сведения об операционном усилителе. Основные параметры и характеристики ОУ. Приближение идеального ОУ. Обобщенная структурная схема ОУ.

Тема 10. Линейные и нелинейные устройства на ОУ

<u>Краткое содержание темы.</u> Линейные аналоговые вычислительные устройства. Инвертирующая схема включения операционного усилителя. Неинвертирующая схема включения операционного усилителя. Решение уравнений вычислительными схемами на ОУ. Нелинейные аналоговые схемы на ОУ. Функциональные преобразователи. Умножение сигналов схемами на операционных усилителях.

Тема 11. Аналоговые компараторы и таймеры

<u>Краткое содержание темы.</u> Общие сведения о компараторах. Аналоговый интегральный компаратор. Принципы построения интегральных компараторов. Применение компараторов. Аналоговые таймеры. Таймер NE555. Основные схемы включения таймера.

Тема 12. Стабилизаторы напряжения

<u>Краткое содержание темы.</u> Линейные стабилизаторов напряжения. Общие сведения. Базовая схема линейного стабилизатора напряжения. Интегральный линейный стабилизатор напряжения. Схемы включения линейных стабилизаторов напряжения. Стабилизация тока. Источники опорного напряжения. Импульсные стабилизаторы напряжения. Общие сведения. Понижающий импульсный стабилизатор. Схема понижающего импульсного стабилизатора напряжения.

Тема 13. Активные фильтры

<u>Краткое содержание темы.</u> Теоретическое описание и реализация фильтров нижних частот: фильтры Баттерворта и Чебышева. Фильтры нижних и верхних частот первого порядка с инвертирующим усилителем. Фильтры нижних и верхних частот второго порядка. Полосовые фильтры второго порядка. Синтез универсального звена на двух интеграторах.

Тема 14. Линейные генераторы электрических колебаний

<u>Краткое содержание темы.</u> Генераторы сигналов на ОУ. Релаксационные генераторы. Генераторы синусоидальных колебаний.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости лекционных, семинарских и практических занятий, тестов по лекционному материалу и входных тестов при подготовке к лабораторным занятиям, выполнения домашних заданий, составления конспектов самоподготовки к лабораторным занятиям и фиксируется в форме контрольной точки не менее одного раза в семестр. Для успешного прохождения текущего контроля необходимо выполнить все контрольные задания. Проверка заданий осуществляется преподавателем или автоматически в системе MOODLE.

Выполнение заданий учитывается в балльно-рейтинговой системе.

9.1. Балльные оценки для элементов контроля Таблица 9.2 – Балльные оценки для элементов контроля

Tuotingu y 12 Banki Bible oqenkii Alin ollekeni tob keni polin				
Элемент учебной	Максимальный	Максимальный	Максимальный	Всего за
деятельности	балл на первую	балл на вторую	балл между второй	семестр
	контрольную точку	контрольную точку	контрольной	
			точкой и концом	
			семестра	
Конспект	2	2	2	6
самоподготовки				
Онлайн-тестирование	2	2	2	6
на лекциях				
Отчет по	4	4	4	12
индивидуальному				
заданию				
Отчет по	2	2	2	6

контрольному заданию				
Расчетное задание	4	4	4	12
Тест	8	10	10	28
Итого максимум за	22	24	24	70
период				
Экзамен				30
Нарастающий итог	22	46	70	100

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Первая часть представляет собой тест из 24 вопросов, проверяющих ИОПК 3.1, ИОПК 8.1, ИПК 1.1, ИПК 2.1 и ИПК 4.1. Ответы на вопросы первой части даются путем выбора из списка предложенных, нахождения соответствия, вычисления по общим формулам.

Вторая часть содержит одно задание, проверяющее ИОПК 3.2, ИОПК 3.3, ИОПК 8.2, ИОПК 8.3, ИПК 1.2, ИПК 1.3, ИПК 2.2, ИПК 2.3, ИПК 4.2, ИПК 4.3 и оформленное в виде практического задания. Ответы на вопросы второй части предполагают составление программы для решения практической задачи и краткую интерпретацию полученных результатов.

Примерный перечень теоретических вопросов

Вопрос 1. Полупроводниковый диод. Характеристики диода с p–n-переходом. Основные параметры и режимы работы полупроводниковых диодов

Вопрос 2. Уравнения диода. Цепи постоянного тока с диодами

Вопрос 3. Биполярный транзистор. Малосигнальные параметры транзистора. Эквивалентная схема транзистора

Вопрос 4. Биполярный транзистор. Характеристики и режимы работы транзистора с ОЭ

Вопрос 5. Биполярный транзистор. Уравнения транзистора. Рабочая точка БТ. Линейный и нелинейный режимы работы БТ

Вопрос 6. Использование схемы составного транзистора (схема Дарлингтона).

Вопрос 7. ПТ с управляющим p-n переходом. Характеристики и параметры ПТ с управляющим p-n переходом

Вопрос 8. МОП-транзисторы. Характеристики и параметры МОП-транзисторов

Вопрос 9. Механизм усиления. Основные параметры и характеристики усилителей

Вопрос 10. Типовые резисторные усилители на биполярном транзисторе. Усилитель с ОЭ и фиксированным током базы

Вопрос 11. Типовые резисторные усилители на биполярном транзисторе. Усилитель с ОЭ и фиксированным потенциалом базы

Вопрос 12. Резисторный усилитель по схеме с общей базой (назначение элементов и работа схемы, эквивалентная схема усилителя)

Вопрос 13. Передаточная функция линейных активных схем с OC. Отрицательная и положительная ОС в усилителях

Вопрос 14. Влияние отрицательной ОС на основные параметры усилителей. Устойчивость активных систем с обратной связью

Вопрос 15. Усилитель с общим коллектором (эмиттерный повторитель)

Вопрос 16. Многокаскадные усилители. Двухкаскадный усилитель ОЭ-ОБ с непосредственной межкаскадной связью

Вопрос 17. Многокаскадные усилители. Двухкаскадный усилитель ОЭ-ОК с непосредственной межкаскадной связью

Вопрос 18. Усилители мощности. Режимы работы усилителей мощности

Вопрос 19. Комплементарный эмиттерный повторитель. Комплементарный эмиттерный повторители в режиме класса В

Вопрос 20. Комплементарный эмиттерный повторитель. Комплементарный эмиттерный повторители в режиме класса АВ

Вопрос 21. Источники (генераторы) стабильного тока

Вопрос 22. Токовое зеркало

Вопрос 23. Простой дифференциальный усилитель

Вопрос 24. Дифференциальный усилитель с источником тока в цепи эмиттеров транзисторов. Умножители сигналов на ДУ с источником тока

Вопрос 25. Общие сведения об операционном усилителе. Основные параметры и характеристики ОУ

Вопрос 26. Приближение идеального ОУ. Обобщенная структурная схема ОУ

Вопрос 27. Инвертирующая схема включения операционного усилителя

Вопрос 28. Неинвертирующая схема включения операционного усилителя

Вопрос 29. Решение уравнений вычислительными схемами на ОУ

Вопрос 30. Умножение сигналов схемами на операционных усилителях

Вопрос 31. Общие сведения о компараторах. Аналоговый интегральный компаратор. Принципы построения интегральных компараторов. Применение компараторов

Вопрос 32. Аналоговые таймеры. Таймер NE555. Основные схемы включения таймера

Вопрос 33. Линейные стабилизаторов напряжения. Общие сведения. Базовая схема линейного стабилизатора напряжения

Вопрос 34. Импульсные стабилизаторы напряжения. Общие сведения. Понижающий импульсный стабилизатор. Схема понижающего импульсного стабилизатора напряжения

Вопрос 35. Теоретическое описание и реализация фильтров нижних частот: фильтры Баттерворта и Чебышева.

Вопрос 36. Фильтры нижних и верхних частот первого порядка с инвертирующим усилителем.

Вопрос 37. Фильтры нижних и верхних частот второго порядка. Полосовые фильтры второго порядка.

Вопрос 38. Синтез универсального звена на двух интеграторах.

Вопрос 39. Генераторы сигналов на ОУ. Релаксационные генераторы. Генераторы синусоидальных колебаний.

Примеры заданий:

Задание 1. Рассчитать линейный стабилизатор напряжения на LM317 (вариант выбирается из базы). Собрать на макетной плате стабилизатор напряжения на LM317. Измерить выходное напряжение. Сравнить расчетные данные с результатами измерений.

Задание 2. Измерить ВАХ диода (вариант выбирается из базы).

Задание 3. Измерить ВАХ стабилитрона (вариант выбирается из базы).

Задание 4. Измерить BAX биполярного транзистора (вариант выбирается из базы).

Задание 5. Измерить ВАХ составного транзистора (вариант выбирается из базы).

Задание 6. Измерить временные характеристики оптрона (вариант выбирается из базы).

Задание 7. Измерить частотные характеристики оптрона (вариант выбирается из базы).

Задание 8. Измерить пороговое напряжения полевого транзистора (вариант выбирается из базы).

Задание 9. Исследовать работу полевого транзистора в ключевом режиме (вариант выбирается из базы).

Задание 10. Рассчитать усилитель с ОЭ и фиксированными потенциалом базы на заданный коэффициент усиления (вариант выбирается из базы). Измерить временные характеристики усилителя на заданных частотах.

Задание 11. Рассчитать усилитель с ОЭ и фиксированными потенциалом базы на заданный коэффициент усиления (вариант выбирается из базы). Измерить частотные характеристики усилителя в заданной полосе частот.

Задание 12. Рассчитать усилитель на полевом транзисторе с управляющим p-ппереходом в схеме с общим истоком (вариант выбирается из базы). Измерить временные характеристики усилителя на заданных частотах.

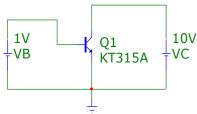
Задание 13. Рассчитать усилитель на полевом транзисторе с управляющим р-п-переходом в схеме с общим истоком (вариант выбирается из базы). Измерить частотные характеристики усилителя в заданной полосе частот.

Задание 14. Рассчитать усилитель на МОП транзисторе в схеме с общим истоком (вариант выбирается из базы). Измерить временные характеристики усилителя на заданных частотах.

Задание 15. Рассчитать усилитель на МОП транзисторе в схеме с общим истоком (вариант выбирается из базы). Измерить частотные характеристики усилителя в заданной полосе частот.

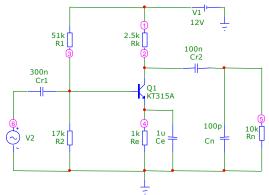
Задание 16. Собрать типовую схему двухкаскадного усилителя (вариант выбирается из базы). Измерить временные характеристики усилителя на заданных частотах.

Задание 17. Собрать типовую схему двухкаскадного усилителя (вариант выбирается из базы). Измерить частотные характеристики усилителя в заданной полосе частот.

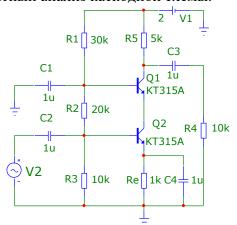

Задание 18. Собрать типовую схему усилителя мощности на ИС LM386 (вариант выбирается из базы). Измерить временные характеристики усилителя на заданных частотах.

Задание 19. Собрать типовую схему усилителя мощности на ИС LM386 (вариант выбирается из базы). Измерить частотные характеристики усилителя в заданной полосе частот.

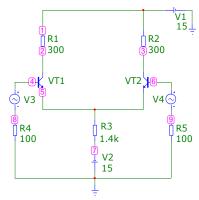
Задание 20. Собрать типовую схему включения компаратора (вариант выбирается из базы). Измерить временные характеристики схемы на заданных частотах.

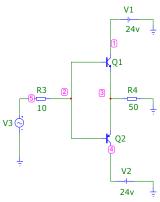

Примеры лабораторных заданий:

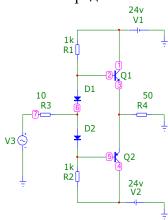
1. Составить схему для измерения статических характеристик биполярного транзистора. Тип транзистора взять из таблицы по номеру варианта, указанному преподавателем. Напряжение источника в цепи коллектора установите равным 15В, а напряжение источника в цепи базы задать равным 1В.



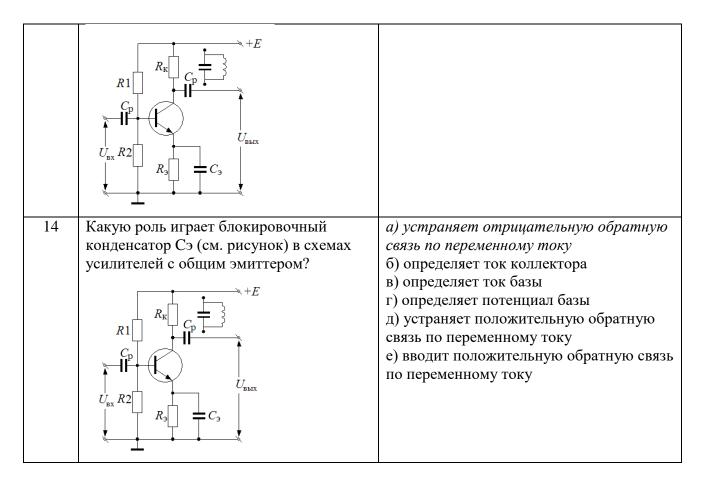
2. Провести расчёт усилителя на биполярном транзисторе в схеме с общим эмиттером. Вычислить сопротивления резисторов R1, R2, Re, Rk. Для этого использовать характеристики транзистора, смоделированные в лабораторной работе "Исследование характеристик и параметров биполярного транзистора" и методику выбора рабочей точки. Тип транзистора, величины Rn,Cr1,Cr2 и Се взять из таблицы по номеру варианта, указанному преподавателем. Коэффициент


усиления схемы взять равным 100. Ток коллектора выбрать в интервале 1-4 мА. Напряжение батареи V1 взять равным 12 В. Ёмкость конденсатора Сп взять равной $150~\rm nk\Phi$.


- 3. Составить каскодную схему с рассчитанными и заданными величинами ее компонентов. Тип транзисторов взять из лабораторной работы "Исследование характеристик и параметров биполярного транзистора". Напряжение батареи взять равным V1. Провести анализ схемы на постоянном токе. Определить токи коллекторов транзисторов, токи базы, ток делителя. Полученные результаты сравнить с расчетными. Определить напряжения в узлах схемы. Сделать вывод о режимах работы транзисторов. Выяснить, как изменяются токи в ветвях схемы при изменении напряжения источника питания V1.
 - 4. Исследовать каскодную схему на переменном токе. На вход подать гармонический сигнал (A=10 mB, f=5 kГц, RS=100 Ом).
- а) Провести временной анализ схемы. Определить коэффициенты усиления схемы по напряжению и току. Определить коэффициент усиления по напряжению второго транзистора *Q*2.
- б) Провести частотный анализ схемы. Определить максимальный коэффициент усиления, полосу пропускания и нее нижнюю и верхнюю границы.
 - 5. Провести многовариантный анализ каскодной схемы.


- 5. Провести расчёт дифференциального каскада (определить величины сопротивлений R1, R2, R3, R4, R5). Для этого использовать характеристики транзистора, смоделированные в лабораторной работе "Исследование характеристик и параметров биполярного транзистора" по номеру варианта, указанному преподавателем и рассмотренную методику расчета схемы.
- 6. Исследовать влияние на коэффициент усиления и AЧX схемы значений $\beta(BF)$ и CJC (емкость перехода база-коллектор).

- 7. Исследовать токовый бустер класса В.
- Проверить статический режим бустера.
- Провести временной анализ выходного и входного сигналов, убедиться в наличии искажений типа «ступенька». Результаты поместить в отчет. Определить коэффициенты усиления бустера по напряжению, току и мощности (K_U , K_I и K_P).
- Получить спектр входного и выходного сигналов. Оценить нелинейные искажения схемы по коэффициенту гармоник.
- Оценить влияние сопротивления нагрузки R4 на коэффициент усиления (R4=5,50,1000)


- 8. Исследовать токовый бустер класса АВ.
- Провести временной анализ выходного и входного сигналов, убедиться в отсутствии искажений выходного сигнала. Результаты поместить в отчет. Определить коэффициенты усиления бустера по напряжению, току и мощности (K_U , K_I и K_P).
- Исследовать влияние амплитуды входного сигнала на выходной сигнал.
- Получить спектр входного и выходного сигналов. Оценить нелинейные искажения схемы по коэффициенту гармоник.
- Оценить влияние сопротивления нагрузки R4 на коэффициент усиления (R4=5,50,1000)
- Провести частотный анализ схемы и определить полосу пропускания.

Примеры тестовых вопросов:

3.0	Примеры тестовых вопросов:	<i>D</i>
№	Вопрос	Варианты ответа
1	Чем объясняется однонаправленность	а) свойствами р-п –перехода
	ВАХ диода?	б) сопротивлением р и п-областей диода
		в) дефектами кристаллической решетки
		полупроводников
2	Как связаны между собой токи	$a) I_{\vartheta} = I_{\delta} + I_{\kappa}$
	биполярного транзистора?	6) IK = IQ + I3
		B) $IQ = I^3 + I^K$
		Γ) $I6 = I_9 - I_K$
		$_{\rm I}$) $_{\rm I}$ к = $_{\rm I}$ 6 + $_{\rm I}$ 9
		e) $I_{\mathfrak{I}} = I_{\mathfrak{K}} + I_{\mathfrak{K}}$
3	Из каких характеристик можно	а) Из передаточной
3		б) Из входных
	определить крутизну биполярного	в) Из выходных
	транзистора при включении с общим	
	эмиттером?	г) Не хватает данных
4	Какую роль играет делитель постоянного	а) фиксирует потенциал базы
+	напряжения R1 +R2 (см. рисунок) в	б) фиксирует потенциал оазы
		/ I I I
	схемах усилителей на биполярном	в) фиксирует ток коллектора
	транзисторе?	г) фиксирует потенциал коллектора
	<u> </u>	д) фиксирует ток эмиттера
	$R_{K} \cap C = \{$	е) фиксирует потенциал эмиттера
	R1	
	$U_{\scriptscriptstyle \mathrm{BX}}R2$	
	R_9 $\pm C_9$	
	\ \ <u>\</u>	
5	Какую роль играет резистор Rб (см.	а) фиксирует ток базы
3	рисунок) в схемах усилителей на	б) фиксирует потенциал базы
	биполярном транзисторе?	в) фиксирует ток коллектора
	онполярном транзисторс:	
		г) фиксирует потенциал коллектора д) фиксирует ток эмиттера
	RK Cp2	, i i i
	Срі	е) фиксирует потенциал эмиттера
	Ø	
	Ø + \\	, p.
6	Как увеличить максимальный	а) увеличить Rk
	коэффициент усиления усилителей с	б) уменьшить Рэ
	общим эмиттером и общей базой в	в) увеличить Рэ
	режиме холостого хода?	г) уменьшить Rk
		д) увеличить Rн
		е) уменьшить Rн
7	Какую роль играет резистор Rк (см.	а) определяет потенциал коллектора
	рисунок) в схемах усилителей с общим	б) вводит положительную обратную
	эмиттером?	связь по переменному току
	_	в) вводит отрицательную обратную связь
		по переменному току
		г) определяет потенциал базы
		г) определяет потенциал базы

		д) определяет ток эмиттера
	$\begin{array}{c c} R_1 & & +E \\ \hline C_p & & \\ U_{BX} & R_2 & & \\ \hline C_p & & \\ U_{Bbit} & & \\ \end{array}$	е) вводит положительную обратную связь по постоянному току
	<u> </u>	,
8	Какую роль играет выходной разделительный конденсатор Cp2 (см. рисунок) в схемах усилителей? ———————————————————————————————————	а) не пропускает постоянный ток через внешнюю нагрузку усилителя б) устраняет отрицательную обратную связь по переменному току в) вводит положительную обратную связь по постоянному току г) определяет низкочастотную границу полосы усиления д) определяет потенциал коллектора е) влияет на коэффициент усиления в области нижних частот
9	Из каких характеристик можно определить сопротивление биполярного транзистора в режиме насыщения?	а) Из выходныхб) Из входныхв) Из передаточнойг) Не хватает данных
10	Что является причиной частотных искажений сигналов в усилителях?	а) неравномерность АЧХ в полосе частот спектра сигнала в) нелинейность ФЧХ в полосе частот спектра сигнала в) нелинейность нагрузки транзистора г) нелинейность рабочего участка ВАХ транзистора
11	Где выбирается рабочая точка в усилителях предварительного усиления?	а) в активном режиме б) в режиме отсечки в) в режиме насыщения г) в смешанном режиме, включающем режим насыщения
12	Как обеспечивается рабочая точка в усилителях?	а) фиксированным потенциалом базы б) фиксированным током эмиттера в) отрицательной обратной связью г) источником питания усилителя
13	Какую роль играет резистор Rэ (см. рисунок) в схемах усилителей с общим эмиттером?	а) вводит отрицательную обратную связь по постоянному току б) определяет коэффициент усиления в) вводит положительную обратную связь по переменному току г) определяет потенциал коллектора д) определяет ток коллектора г) вводит положительную обратную связь по постоянному току

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Для допуска к экзамену необходимо выполнить все следующие условия.

- 1. Набрать не менее 70% от максимальной оценки по каждому из текущих тестов в системе Moodle.
- 2. Предоставлять на проверку преподавателю конспекты самоподготовки к лабораторным работам.
 - 3. Выполнить индивидуальное расчетное задание и получить оценку.
- 4. Вовремя, согласно графику, выполнить все лабораторные работы и получить за них не ниже 70% в системе MOODLE. За отчет, сданный после срока, начисляются штрафные баллы.
 - 5. Ответить на вопросы итогового теста по дисциплине.
- 6. Итоговое тестирование по дисциплине должно быть пройдено не менее, чем на 70%. В случае, если набрано меньшее количество правильных ответов, преподаватель проводит на консультации перед экзаменом устное собеседование с целью определения уровня подготовленности обучающегося к экзамену.

Процедура экзамена

- 1. Если на первом итоговом тестировании по дисциплине набрано менее 70%, то обучающийся проходит повторное тестирование.
- 2. Обучающийся выполняет практическое задание, поясняя свои действия. При необходимости проводит расчеты. Необходимо дать корректные ответы на вопросы по практической части (всего не более пяти вопросов).
 - 3. Устный ответ по билету.

4. Оценка за экзамен выставляется как средняя оценка за работу в семестре, итоговый тест по дисциплине, выполнение практического задания и устный ответ.

Пересчет баллов в оценки за контрольные точки представлен в таблице 10.1

Таблица 10.1 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ 2	2

Пересчет суммы баллов в традиционную оценку представлен в таблице 10.2

Таблица 10.2 – Пересчет суммы баллов в традиционную оценку

1 7	
Оценка	Итоговая сумма баллов,
	учитывает успешно сданный зачет/экзамен
5 (отлично) (зачтено)	90 - 100
4 (хорошо) (зачтено)	70 - 89
3 (удовлетворительно) (зачтено)	60 - 65
2 (неудовлетворительно) (не зачтено)	Ниже 60

11. Учебно-методическое обеспечение

- а) Электронные учебные курсы по дисциплине в электронном университете «Moodle»:
- «Схемотехника аналоговых электронных устройств. Лекции 3курс (РФФ.С.1 сем.)», https://moodle.tsu.ru/course/view.php?id=2555
- «Схемотехника аналоговых электронных устройств. Семинары 3курс (РФФ.С.1 сем.)», https://moodle.tsu.ru/course/view.php?id=24129
- «Схемотехника аналоговых электронных устройств. Проекты 3курс (РФФ.С.1 сем.)», https://moodle.tsu.ru/course/view.php?id=26575
- «Схемотехника аналоговых электронных устройств. Лабораторный практикум 3курс (РФФ.С.1 сем.)», https://moodle.tsu.ru/course/view.php?id=2551
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
- в) План семинарских занятий по дисциплине, размещенные в электронном учебном курсе «Схемотехника аналоговых электронных устройств. Семинары 3курс (РФФ.С.1 сем.)».
- г) Методические указания по проведению лабораторных работ, размещенные в электронном учебном курсе «Схемотехника аналоговых электронных устройств. Лабораторный практикум 3курс (РФФ.С.1 сем.)».
- д) Методические указания по организации самостоятельной работы студентов, размещенные в электронных учебных курсах «Схемотехника аналоговых электронных устройств. Лекции 3курс (РФФ.С.1 сем.)» и «Схемотехника аналоговых электронных устройств. Проекты 3курс (РФФ.С.1 сем.)».

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Новожилов, О.П. Электроника и схемотехника в 2 ч. Часть 1: учебник для вузов / О.П. Новожилов. М.: Издательство Юрайт, 2023. 382 с. (Высшее образование). ISBN 978-5-534-03513-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/512849
- Миленина, С. А. Электроника и схемотехника: учебник и практикум для вузов / С.А. Миленина; под редакцией Н.К. Миленина. 2-е изд., перераб. и доп. М.: Издательство Юрайт, 2023. 270 с. (Высшее образование). ISBN 978-5-534-05078-3. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/514159
- Миловзоров, О.В. Электроника: учебник для вузов / О.В. Миловзоров, И.Г. Панков. 6-е изд., перераб. и доп. М.: Издательство Юрайт, 2023. 344 с. (Высшее образование). ISBN 978-5-534-00077-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/510731
- Волович, Г.И. Схемотехника аналоговых и аналогово-цифровых электронных устройств / Г.И. Волович. 4-е, изд. М.: ДМК Пресс, 2018. 636 с. ISBN 978-5-97060-623-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/107891
- Перепелкин, Д.А. Схемотехника усилительных устройств: учебное пособие / Д.А. Перепелкин. 2-е изд., испр. и перераб. М.: Горячая линия-Телеком, 2020. 240 с. ISBN 978-5-9912-0456-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/176127

б) дополнительная литература:

- Дейкова Г.М., Жуков А.А. Схемотехника аналоговых электронных устройств. Теория. Учебно-методическое пособие. Томск: ТГУ, 2013. 232 с.
- Дейкова Г.М., Жуков А.А. Схемотехника аналоговых электронных устройств. Лабораторный практикум. Учебно-методическое пособие. Томск: ТГУ, 2013. 128 с.
- Дейкова Г.М., Жуков А.А. Схемотехника аналоговых электронных устройств. Практикум. Учебно-методическое пособие. Томск: ТГУ, 2013. 44 с.
- Титце, У. Полупроводниковая схемотехника / У. Титце, К. Шенк. 12-е изд. М.: ДМК Пресс. Том 1. 2009. 832 с. ISBN 978-5-94120-200-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/915
- Титце, У. Полупроводниковая схемотехника / У. Титце, К. Шенк. 12-е изд. М.: ДМК Пресс. Том II. 2009. 942 с. ISBN 978-5-94120-201-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/916
- Амелина, М.А. Программа схемотехнического моделирования Місго-Сар. Версии 9, 10: учебное пособие для вузов / М.А. Амелина, С.А. Амелин. 3-е изд., стер. Санкт-Петербург: Лань, 2021. 632 с. ISBN 978-5-8114-6995-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/153923
- Бишоп, О. Электронные схемы и системы: учебное пособие / О. Бишоп. М.: ДМК Пресс, 2016. 576 с. ISBN 978-5-97060-172-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/93262
- Павлов В.Н. Схемотехника аналоговых электронных устройств. М.:
 Издательский центр "Академия", 2008. 288 с.
- Корис Р., Шмидт-Вальтер Х. Справочник инженера-схемотехника. М:
 Техносфера, 2008. 608 с.
 - в) ресурсы сети Интернет:
 - в) ресурсы сети Интернет:
 - Основы электротехники и электроники https://openedu.ru/course/urfu/ELB/

- Журнал «Известия вузов. Радиоэлектроника» https://re.eltech.ru/
- Журнал «Радиотехника и электроника» https://sciencejournals.ru/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office 2010 Russian Academic Open, Microsoft Windows Professional 7 Academic Open (Лицензия №47729022 от 26.11.2010)
- Пакет программного обеспечения РТС MathCad Education (Договор поставки №7193 от 14.10.2015).
- Пакет программного обеспечения MathWorks MATLAB Education (Договор поставки №7193 от 14.10.2015).
- Пакет программного обеспечения Micro-Cap (свободно распространяемое программное обеспечение)
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатории, оборудованные:

- Комплекты виртуальных измерительных приборов NI ELVIS II+
- Стандартные измерительные приборы
- Макеты исследуемых систем

15. Информация о разработчиках

Жуков Андрей Александрович, кандидат физ.-мат. наук, доцент, доцент