Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (БИОЛОГИЧЕСКИЙ ИНСТИТУТ)

УТВЕРЖДЕНО: Директор Биологического института Д.С. Воробьев

Оценочные материалы по дисциплине

Аэрокосмические методы

по направлению подготовки

35.03.01 Лесное дело

Направленность (профиль) подготовки: «Лесное и лесопарковое хозяйство»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2022**

СОГЛАСОВАНО: Руководитель ОП С.А. Мельник

Председатель УМК А.Л. Борисенко

Оценочные материалы дисциплины (ОМД) являются элементом системы оценивания сформированности компетенций у обучающихся в целом или на определенном этапе ее формирования.

ОМД разрабатываются в соответствии с рабочей программой (РП) дисциплины и включают в себя набор оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации по дисциплине.

1. Компетенции и результаты обучения, формируемые в результате освоения дисциплины

виј	ф	Код и наименование	Критерии оценивания результатов обучения		
Компетенция	тем и наименование результатов обучения (планируемые результаты обучения, характеризующие этапы формирования компетенций)		Зачтено	Не зачтено	
	ИОПК-4.1	OP-4.1.1. Знать ключевые понятия и термины аэрокосмических методов в лесном хозяйстве.	Знает основные понятия и термины аэрокосмических методов	Не знает основные понятия и термины	
OIIK-4		OP-4.1.2. Знать физические основы дистанционного зондирования Земли, виды съемочной аппаратуры и ключевые характеристики аэрокосмических снимков.	Демонстрирует знания спектральных диапазонов, технических средств съемки и характеристики снимков	Нет представлений о спектральных диапазонах, технических средств съемки и характеристики снимков	
	ИОПК-4.2	OP-4.2.1. Уметь подбирать материалы дистанционного зондирования для решения различных прикладных задач в лесном хозяйстве.	Обосновано подбирает снимки для решения профессиональных задач	Не может обосновать подбор снимков для решения профессиональных задач	
		OP-4.2.2. Самостоятельно осуществлять выбор методов обработки аэрокосмических изображений.	Может самостоятельно осуществлять выбор методов обработки снимков.	Не может осуществлять выбор методов обработки аэрокосмических изображений.	
		OP-4.2.3. Владеть навыками тематического дешифрирования для решения исследовательских и прикладных задач профессиональной направленности.	Владеет навыками тематического дешифрирования	Не владеет навыками тематического дешифрирования	
	иопк- 5.1.	OP-5.1.1. Знать основные этапы тематического дешифрирования.	Знает основные этапы технологических операций по обработке снимков	Не знает основные этапы технологических операций по обработке	

				снимков
OIIK-5		OP-5.1.2. Владеть методикой организации процесса тематического дешифрирования.	Владеет методикой организации процесса тематического дешифрирования.	Не владеет методикой организации процесса тематического дешифрирования
	ИОПК-5.2	OP-5.2.1. Осуществлять геометрическую коррекцию аэрокосмических изображений.	Может осуществлять геометрическую коррекцию снимков	Не может осуществлять геометрическую коррекцию снимков
		OP-5.2.2. Проводить различные виды тематической классификации изображений.	Имеет представления и умеет проводить различные виды тематической классификации снимков.	Не имеет представления и не умеет проводить различные виды тематической классификации снимков
	ИОПК-5.3	OP-5.3.1. Самостоятельно оценивать точность геометрической коррекции аэрокосмических изображений.	Умеет оценивать точность геометрической коррекции снимков	Не умеет оценивать точность геометрической коррекции снимков
		OP-5.3.2. Оценивать надежность результатов дешифрирования.	Может делать оценку надежности результатов дешифрирования	Не может оценивать надежность результатов дешифрирования
		OP-5.3.3. Создавать тематические карты по результатам дешифрирования снимков.	Может создавать тематические карты по результатам дешифрирования снимков	Не может создавать тематические карты по результатам дешифрирования снимков
ОПК-7	ИОПК-7.2	OP-7.2.1.Умеет выбирать программное обеспечение для обработки снимков.	Умеет самостоятельно выбирать ПО для обработки снимков	Не имеет представления о ПО для обработки снимков
	ИОПК-7.3	OP-7.3.1. Владеет навыками работы в программном комплексе ERDAS Imagine для обработки и анализа ДДЗЗ	Владеет навыками работы в программном комплексе ERDAS Imagine для обработки и анализа ДДЗЗ	Не владеет навыками работы в программном комплексе ERDAS Imagine для обработки и анализа ДДЗЗ

2. Этапы формирования компетенций и виды оценочных средств

№	Этапы формирования компетенций	Код и наименование	Вид оценочного средства
	(разделы дисциплины)	результатов	(тесты, задания, кейсы, вопросы
		обучения	и др.)
1	Аэрокосмические методы в лесном	OP-4.1.1.	Тест
	хозяйстве. Основные понятия и		
	термины		
2	История развития аэрокосмических	OP-4.1.1; OP-4.1.2.	Тест
	методов		
3	Физические основы аэрокосмических	OP-4.1.1; OP-4.1.2.	Тест, задание к
	методов		практической/лабораторной
			работе «Спектральные
			индексы»
4	Технические средства и виды съёмок.	OP-4.1.1; OP-4.1.2.	Тест, доклад
5	Виды и ключевые характеристики	OP-4.1.1. OP-4.1.2.	Тест
	аэрокосмических снимков		
6	Теоретические основы	OP-4.1.1; OP-4.2.1;	Тест
	дешифрирования снимков	OP-5.1.1.	
7	Технология и организация	OP-4.1.1; OP-4.2.1;	Задания к практическим
	дешифрирования снимков	OP-4.2.2; OP-4.2.3;	работам «Описание-аннотация
		OP-5.1.1; OP-5.1.2;	к снимку» и «Этапы
		OP-5.2.1; OP-5.3.3;	дешифрирования»
		OP-7.2.1.	
8	Основы работы с ДДЗ в программном	OP-4.1.1; OP-4.2.1;	Задания к лабораторным
	комплексе ERDAS Imagine	OP-4.2.2; OP-4.2.3;	работам
		OP-5.1.1; OP-5.1.2;	
		OP-5.2.1; OP-5.2.2;	
		OP-5.3.1; OP-5.3.2;	
		OP-5.3.3; OP-7.3.1.	

3. Типовые контрольные задания или иные материалы, необходимые для оценки образовательных результатов обучения

3.1. Типовые задания для проведения текущего контроля успеваемости по дисциплине (тесты, задания).

Темы тестов:

- Тест 1 Аэрокосмические методы в лесном хозяйстве. Основные понятия и термины.
 - Тест 2. История развития аэрокосмических методов
 - Тест 3. Физические основы аэрокосмических методов
 - Тест 4. Технические средства и виды съёмок.
 - Тест 5. Виды и ключевые характеристики аэрокосмических снимков
 - Тест 6. Теоретические основы дешифрирования снимков
- Тест является формой контроля, направленной на проверку владения терминологическим аппаратом, конкретными знаниями в области отдельного

раздела дисциплины. Форма тестов — закрытая, к каждому заданию даются четыре варианта ответов, один из которых является правильным. Тесты имеют разные уровни сложности; преобладают тесты средней сложности, но встречаются и тесты повышенной трудности. Тесты встроены в лекционный материал, который размещен в системе MOODLE.

Примеры вопросов тестовых заданий:

- 1. Когда появились первые коммерческие программы для работы с ДДЗ?
- А) В 1990-х гг.
- Б) В начале 1970-х гг.
- В) В конце 1980-х гг.
- Г) В конце 1950-х гг.
- 2. Выберите пример программного комплекса для работы с ДДЗ.
- A) ER Mapper.
- Б) ArcView GIS.
- B) AutoCAD.
- Γ) Corel DRAW.
- 3. Какой способ представления графики характерен для цифровых космических снимков?
 - А) Любой, поддерживающий индексированную цветовую палитру.
 - Б) Фотографический.
 - В) Растровый.
 - Г) Векторный.
 - 4. Какой из видов разрешения космических снимков измеряется в битах?
 - А) Пространственное разрешение съёмки.
 - Б) Временное разрешение съёмки.
 - В) Радиометрическое разрешение съёмки.
 - Г) Спектральное разрешение съёмки.
 - 5. Что такое спектральное разрешение съёмки?
- А) Минимальный размер объектов на земной поверхности, различимых на снимке.
 - Б) Количество каналов спектральных диапазонов съёмки.
- В) Характерные интервалы длин волн электромагнитного спектра, к которым чувствителен датчик съёмочной платформы.
 - Г) Частота съёмки.
- 6. К какому виду космических систем ДДЗ по типу съёмочной аппаратуры относится российский спутник Монитор-Э?
 - А) Фотографические.
 - Б) Сканерные.
 - В) Телевизионные.
 - Г) Радиолокационные.
 - 7. Что такое окна прозрачности атмосферы?

- А) Диапазоны спектра электромагнитных волн, для которых атмосфера наиболее проницаема.
- Б) Диапазоны высот, на которых орбита геостационарных спутников наиболее устойчива.
- В) Наиболее благоприятные интервалы времени для площадной аэрофотосъёмки.
- Г) Периоды безоблачной погоды для комплексного экологического мониторинга территории на основе ДДЗ.

Примерный перечень тем лабораторных / практических занятий:

- Основные типы съёмочных платформ и характеристика наиболее распространённых космических систем ДДЗ.
 - ДДЗ с помощью беспилотных летательных аппаратов (БПЛА).
 - Российские системы дистанционного зондирования Земли.
 - Спектральные индексы (вегетационные, почвенные, снежные, водные и др.).
- Знакомство с программным комплексом ERDAS Imagine. Интерфейс. Основные модули.
- Импортирование космических снимков в ERDAS Imagine с помощью модуля Import/Export.
- Просмотр изображений в ERDAS Imagine с помощью модуля Viewer. Основные инструменты
- Измерение на снимках. Измерение площадей объектов. Измерение длины водотоков.
- Привязка (геометрическая коррекция) космического снимка и составление описания-аннотации к нему.
- Автоматическая (безэталонная) классификация изображений методом кластерного анализа (алгоритм ISODATA) и создание тематических растровых карт.
- Алгоритмы контролируемой классификации изображений: создание обучающих выборок, оценка качества эталонов, решающие правила классификации.
 - Расчёт спектральных индексов. NDVI и др.
 - Экспорт изображений.
 - Создание компоновок карт.

Задание — подготовка доклада (по выбору студента) по теме «Основные типы съёмочных платформ и характеристика наиболее распространённых космических систем ДДЗ». Доклад длительностью 10 минут готовится по выбранному студентом вопросу. Представление доклада включает презентацию.

Темы для докладов:

ДЗ с помощью беспилотных летательных аппаратов (БПЛА).

Спутники серии LANDSAT (США).

Спутники серии SPOT, Pleiades (Франция).

Sentinel - семейство спутников дистанционного зондирования Земли Европейского космического агентства, созданное в рамках проекта глобального мониторинга окружающей среды.

Гиперспектральные съемочные системы (ASTER и MODIS – приборы, установленные на боргу спутника Terra).

Радиолокационные системы ДДЗ (спутники ALOS, ERS, Envisat, RADARSAT и др.).

Российские системы дистанционного зондирования Земли.

Американские спутниковые системы сверхвысокого пространственного разрешения Ikonos, Quick Bird, GeoEye, WorldView и др.

Китайские спутниковые системы (GF, ZY, Zhuhai и др.).

Индийские спутниковые серии (IRS, Cartosat и др).

Израильская спутниковая система (EROS и др.).

Бразильская спутниковая система (Amazônia и др.).

DMC - спутниковая группировка.

Кубсат - формат малых искусственных спутников Земли.

Задание к лабораторной работе по теме «Просмотр изображений в ERDAS Ітадіпе с помощью модуля Viewer»

- 1. Основные инструменты.
- 2. Функции блока визуализации (IMAGINE Viewer).
- 3. Процедуры визуализации изображений.
- 4. Создание слоя фрагмента изображения (Menu AOI Options).
- 5. Управление слоями изображения в окне вьюера.
- 6. Отображение векторных и растровых слоёв.
- 7. Редактирования атрибутивной таблицы.
- 8. Выбор условных знаков.
- 9. Спектральные синтезы.

Пример лабораторной работы «Привязка (геометрическая коррекция) космического снимка».

Часто данные дистанционного зондирования изначально поставляются в «сыром» виде, т.е. без географической привязки. ERDAS Imagine имеет функции геометрической коррекции таких данных по векторным картам или уже привязанным растровым изображениям (т.е. находящимся в какой-либо картографической проекции и системе координат). Ниже будет рассмотрен пример геометрической коррекции снимка Aster по уже спроецированному снимку.

- Шаг 1: Запустить модуль Viewer, нажав на соответствующую кнопку в главной панели ERDAS Imagine. Загрузить изображение космического снимка Tomsk.img.
- Шаг 2: Отключить расширенную панель инструментов вьюера, нажав на последнюю кнопку в главной панели инструментов.
- Шаг 3: Открыть второе окно вьюера, нажав на кнопку Viewer в главной панели ERDAS Imagine.
 - Шаг 4: Для второго окна вьюера повторить шаг 2.
- Шаг 5: Оптимизировать размещение окон вьюеров на экране вручную или с помощью команды Tile Viewers меню Session главной панели ERDAS Imagine.
- Шаг 6: Загрузить во второе окно вьюера изображение спроецированного снимка (файл Томск_15м_15_05_2003_gk.img). Подтверждение о наличии географической привязки изображения можно увидеть в строке состояния окна вьюера там показана информация о текущих координатах курсора, картографической проекции и эллипсоиде.
- Шаг 7: В меню Raster первого окна вьюера выбрать команду Geometric Correction.

- Шаг 8: В появившемся диалоговом окне Set Geometric Model установить геометрическую модель Polynomial и нажать ОК.
- Шаг 9: В появившемся диалоговом окне Polynomial Model Properties нажать Close.
- Шаг 10: В появившемся диалоговом окне GCP Tool Reference Setup (управление установкой контрольных точек привязки) выбрать Ex-isting Viewer (т.е. использовать контрольные точки из уже открытого окна вьюера) и нажать ОК.
- Шаг 11: Указать на окно вьюера, из которого будут браться контрольные точки, нажав мышью на изображение спроецированного снимка во втором окне вьюера.
- Шаг 12: В результате появится диалоговое окно с информацией о картографической проекции, типе сфероида и системе координат уже привязанного снимка. Закрыть окно, нажав ОК.
- Шаг 13: На экране должны появиться два маленьких окна вьюера, содержащих увеличенные фрагменты изображений первого и второго окон, а также таблица контрольных точек с кнопками инструментов привязки.
- Шаг 14: Используя инструмент Выбор точек привязки, передвигать поочерёдно квадраты увеличительных окошек в первом и во втором окне вьюера, находя подходящие точки привязки. В качестве точек привязки лучше всего использовать пересечения асфальтовых и железных дорог, углы крупных строений, т.е. долгосрочные антропогенные объекты. Если на снимке антропогенных объектов нет, то можно использовать объекты гидросети, например устья малых рек, но в таком случае надо учитывать сезон съёмки (изменения гидрологического режима), а также возможность смещения русла в ходе эрозионно-аккумулятивной деятельности реки.
- Шаг 15: Используя инструмент Простановка точек привязки, проставить поочерёдно выбранные опорные точки привязки в маленьких окнах вьюера, отражающих увеличенные фрагменты первого и второго снимков.

Хотя для геометрической коррекции достаточно трёх опорных точек, желательно иметь не менее 10 таких точек. При этом необходимо выбирать точки, как можно более равномерно располагающиеся по территории снимка, и крайне нежелательно ставить только точки, находящиеся почти на одной линии (например, вдоль реки или дороги).

В случае неправильного указания опорной точки, её можно передвинуть с помощью инструмента.

Шаг 16: Для удобства работы с контрольными точками им можно присвоить различные цвета, т.к. по умолчанию для всех точек используется белый цвет. Для этого в таблице контрольных точек поочерёдно в двух столбцах Color в строке точки надо нажать любую кнопку мыши и выбрать нужный цвет.

Шаг 17: Начиная с четвёртой точки, программа сама начинает проставлять опорную точку во втором окне вьюера, «предполагая» её расположение на основании уже введённых точек привязки. Однако в большинстве случаев такое «предполагаемое расположение» необходимо корректировать с помощью инструмента.

Шаг 18: После ввода трёх контрольных точек программа также начинает рассчитывать среднеквадратическую ошибку расположения для каждой точки – RMS Error. Желательно, чтобы эта ошибка была как можно меньше (в общем случае, меньше 1).

- Шаг 19: Если ошибка RMS Еггог для какой-то точки очень велика, то необходимо перепроверить расположение этой точки на двух снимках и при необходимости переставить точку или удалить её. Для удаления точки необходимо выделить её строку в таблице, нажав на номер точки в столбце Point #, а затем там же нажать правую кнопку мыши и выбрать в ниспадающем меню Delete Selection.
- Шаг 20: Если все опорные точки проставлены, и ошибки RMS Error в пределах нормы, то можно переходить к запуску процесса геометрической коррекции изображения. Для этого надо выбрать инструмент Resample в окне Geo Correction Tools.
- Шаг 21: В появившемся диалоговом окне Resample в строке Output File указать свою папку и ввести название выходного файла Tomsk_GK.img. Выбрать Resample Method (метод интерполяции) Bilinear Interpolation. Установить опцию Ignore Zero in Stats для исключения нулевых значений из статистики изображения. Нажать ОК. В результате будет запущен процесс перепроецирования снимка. После завершения процесса нажать ОК.
- Шаг 22: В окне Geo Correction Tools нажать Exit. На запросы системы о сохранении геометрической модели и точек привязки ответить Нет.
- Шаг 23: Закрыть первое окно вьюера с исходным непривязанным изображением.
- 3.2. Типовые задания для проведения промежуточной аттестации по дисциплине (задания к зачету). В каждый вариант билета входит три задания; примеры вариантов приведены ниже.

Вариант 1

- 1. Выполнить геометрическую коррекцию изображения по уже привязанному снимку.
- 2. Провести автоматическую классификацию изображения методом кластерного анализа и создать тематическую растровую карту результатов классификации (дешифрирование лесной растительности).
- 3. Вычислить вегетационный индекс NDVI и проанализировать полученные показатели.

Вариант 2

- 1. Выполнить геометрическую коррекцию изображения по географической карте.
- 2. Провести контролируемую классификацию снимка на основе создания обучающих выборок и создать тематическую растровую карту результатов классификации (дешифрирование лесной растительности).
- 3. Вычислить вегетационный индекс SAVI и проанализировать полученные показатели.

4. Методические материалы, определяющие процедуры оценивания образовательных результатов обучения

4.1. Методические материалы для оценки текущего контроля успеваемости по дисциплине.

Формирование каждого индикатора компетенции оценивается следующим образом:

Компетенция	Индикатор компетенции	Формат оценки	Процедура оценки	
	ИОПК-4.1.	Тест	Тесты оцениваются в 10 баллов (максимально) за 10 вопросов	
OHIC 4	ИОПК-4.1.	Задание к практической работе	Выполнение задания оценивается в 10 баллов (максимально)	
ОПК-4	иопк-4.2	Тест	Тесты оцениваются в 10 баллов (максимально) за 10 вопросов	
		Задание к практической работе	Выполнение задания оценивается в 10 баллов (максимально)	
ОПК-5	ИОПК-5.1. ИОПК-5.2 ИОПК-5.3	Задание к практической/лабораторной работе	Выполнение задания оценивается в 10 баллов (максимально)	
	ИОПК-7.2	Задание к	Выполнение задания оценивается в	
ОПК-7	ИОПК-7.3	практической/лабораторной работе	10 баллов (максимально)	

4.2. Методические материалы для проведения промежуточной аттестации по дисциплине.

Промежуточная аттестация в форме зачета проводится в седьмом семестре на основе суммы баллов, которые студент получил за выполнение всех заданий и тестов. Если студент сдал тесты и выполнил задания на общую сумму баллов, равную 80% от максимально возможной суммы баллов, то он получает оценку «зачтено».

Учебная деятельность студента	Максимальное количество баллов		
	за	за один	в сумме за
(в скобках указано количество видов учебной	каждое	вид	все виды
деятельности в течение семестра)	задание	учебной	учебной
		деятельн	деятельност
		ости	и семестра
Тестирование (6)		10	6x10=60
Лабораторные работы (5)		10	5x10=50
Практические работы (5)		5	5x10=50
ИТОГО			160
ЗАЧТЕНО			128

Компетенция	Индикатор компетенции	Не зачтено	Зачтено	
ОПК-4	ИОПК-4.1.	47 и менее баллов	48 -60 баллов	
OHK-4	ИОПК-4.2.	47 и менее оаллов	48 -00 0аллов	
	ИОПК-5.1.		80-100 баллов	
ОПК-5	ИОПК-5.2.	70 y y 2222 50 770		
	ИОПК-5.3.	79 и менее баллов		
ОПК-7	ИОПК-7.2			

ИОПК-7.3		
Итого	127 и менее баллов	128-160 баллов

Если набрано меньше 80 % баллов от максимально возможной суммы, то студент сдает зачет по билетам в форме выполнения практических заданий на компьютере. Каждый вариант содержит три задания для проверки практических умений и навыков, включая выполнение основных технологических операций по обработке ДДЗЗ, а также анализ пространственной информации. Продолжительность зачета 1,5 часа.

Результаты зачета определяются оценками «зачтено» / «не зачтено».

Критерии оценивания знаний и умений обучающихся на зачёте

	<u> </u>
	1) Показаны знания понятийного аппарата.
	2) Продемонстрированы навыки работы в программном комплексе
	ERDAS IMAGINE.
	3) Продемонстрированы следующие умения:
«зачтено»	- выполнять основные технологические операции по обработке
	снимков;
	- анализировать и систематизировать пространственную информацию
	с использованием обработанных снимков.
	4) Выполнено правильно два и более практических задания.
	1) Отсутствие знания понятийного аппарата.
//XX 2 2 2 X X X X X X X X X X X X X X X	2) Отсутствие навыков работы в программном комплексе ERDAS
«не зачтено»	IMAGINE.
	3) Неверное выполнение 2-х заданий и более.

Информация о разработчиках

Хромых О.В., канд. геогр. наук, доцент кафедры географии геологогеографического факультета