Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Нейронные сети

по направлению подготовки

09.03.03 Прикладная информатика

Направленность (профиль) подготовки: **Искусственный интеллект и большие данные**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП С.П.Сущенко

Председатель УМК С.П.Сущенко

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-10 Способен решать задачи в профессиональной деятельности на основе информационной и библиографической культуры, цифровых технологий и систем искусственного интеллекта.
- ПК-3 Способен осуществлять научно-исследовательские и опытноконструкторские разработки как при исследовании самостоятельных тем, так и разработки по тематике организации.
- ПК-7 Способен использовать системы искусственного интеллекта на основе нейросетевых моделей и методов.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-10.1 Выбирает, применяет и адаптирует методы исследования для решения задач профессиональной деятельности с использованием систем искусственного интеллекта
- ИПК-3.1 Осуществляет проведение работ по обработке и анализу научнотехнической информации и результатов исследований
- ИПК-7.1 Осуществляет оценку и выбор моделей искусственных нейронных сетей и инструментальных средств для решения поставленной задачи

2. Задачи освоения дисциплины

- Освоить аппарат построения интеллектуальных систем на базе искусственных нейронных сетей.
- Научиться применять понятийный аппарат интеллектуальных систем с использованием инструментария библиотек Python, R, публичных облачных сервисов, оценивать эффективность их работы и внедрять в приложения для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Модуль «Введение в искусственный интеллект».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Седьмой семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: «Введение в интеллектуальный анализ данных».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основы нейрокомпьютерных вычислений

Основные положения нейросетевых вычислений. Основы проектирования нейросетевых архитектур.

Тема 2. Нейронные сети встречного распространения

Настройка архитектуры и алгоритмы настройки нейронных сетей встречного распространения. Построение нейросетевого регрессора.

Тема 3. Алгоритмы оптимизации в обучении нейросетевых моделей

Оптимизаторы обучения нейронных сетей. Исследование архитектур и оптимизаторов нейронной сети – классификатора для повышения её эффективной работы.

Тема 4. Рекуррентные нейронные сети

Нейронные сети с обратными связями. Настройка рекуррентной нейросети для исследования сигналов.

Тема 5. Сверточные нейронные сети

Сверточные нейронные сети и автоэнкодеры. Исследование изображений сверточными нейронными сетями.

Тема 6. Обучение без учителя и обучение с подкреплением в нейросетевых моделях

Нейронные сети, обучающиеся без учителя и с подкреплением. Выделение групп объектов с помощью самоорганизующихся нейронных сетей.

Тема 7. Визуализация и объяснимость нейронных сетей

Визуализация и объяснимость нейросетевых моделей. Визуализация структуры и процесса активации нейронной сети.

Раздел 8. Память нейросетевых моделей

Хранение ассоциаций и управление памятью в нейросетевых моделях. Построение адаптивных нейронных сетей.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в седьмом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «LMS IDO» https://lms.tsu.ru/course/view.php?id=35025
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Christopher M. Bishop, Hugh Bishop. Deep Learning. Foundations and Concepts.
 Springer. 2024. ISBN 978-3-031-45467-7. https://doi.org/10.1007/978-3-031-45468-4 649 p.
- Suman Kalyan Adari, Sridhar Alla. Beginning Anomaly Detection Using Python-Based Deep Learning: Implement Anomaly Detection Applications with Keras and PyTorch, Second Edition. Apress. 2024. ISBN-13 (pbk): 979-8-8688-0007-8. https://doi.org/10.1007/979-8-8688-0008-5 529 p.
- Ivan Gridin. Automated Deep Learning Using Neural Network Intelligence: Develop and Design PyTorch and TensorFlow Models Using Python. Apress. 2022. ISBN-13 (pbk): 978-1-4842-8148-2. https://doi.org/10.1007/978-1-4842-8149-9 384 p.
- Шолле Франсуа. Глубокое обучение на Python. 2-е межд. издание. СПб.: Питер, 2023. 576 с.: ил. (Серия «Библиотека программиста»). ISBN 978-5-4461-1909-7
- Ферлитш Э. Шаблоны и практика глубокого обучения / пер. с англ. А. В. Логунова. М.: ДМК Пресс, 2022. 538 с.: ил. ISBN 978-5-93700-113-9

б) дополнительная литература:

- Douglas J. Santry. Demystifying Deep Learning. An Introduction to the Mathematics of Neural Networks. The Institute of Electrical and Electronics Engineers, Inc. IEEE Press Wiley – 2024. Hardback ISBN: 9781394205608 – 247 p.
- Ivan Vasilev. Python Deep Learning. Packt Publishing. 2023. ISBN 978-1-83763-850-5 345 p.
 - Simon J.D. Prince. Understanding Deep Learning. The MIT Press, https://mitpress.mit.edu. 2024. 527 p.
- Daniel A.Roberts, Sho Yaida, Boris Hanin. The Principles of Deep Learning Theory.
 Cambridge University Press. 2022. ISBN 9781316519332. DOI: 10.1017/9781009023405. 460 p.
- Стивенс Эли, Антига Лука, Виман Томас. РуТогсh. Освещая глубокое обучение. СПб.: Питер, 2022. 576 с.: ил. —(Серия «Библиотека программиста»). ISBN 978-5-4461-1945-5
- Тушан Ганегедара. Обработка естественного языка с TensorFlow / пер. с анг. В. С. Яценкова. М.:ДМК Пресс, 2020. 382 с.: ил. ISBN 978-5-97060-756-5

в) ресурсы сети Интернет:

- The AI community building the future. The platform where the machine learning community collaborates on models, datasets, and applications. https://huggingface.co/
 - OpenAI. https://openai.com/
- Tensorflow. An end-to-end platform for machine learning. https://www.tensorflow.org/
 - $\ PyTorch\ documentation. \underline{https://pytorch.org/}$

- IBM. What is deep learning? - https://www.ibm.com/topics/deep-learning

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
- публично доступные облачные технологии (Google Docs, Google Colab, Яндекс диск).
 - Пакет Anaconda
 - Средства языков программирования и анализа данных R и Python
 - Библиотеки для машинного и глубокого обучения: Scikit-learn, NumPy, Matplotlib.pyplot, Seaborn, PyTorch, Keras/TensorFlow, OpenAI Gym.
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Аксёнов Сергей Владимирович, к.т.н., кафедра теоретических основ информатики (ТОИ) Института прикладной математики и компьютерных наук (ИПМКН) Национальный исследовательский Томский государственный университет (НИ ТГУ), доцент каф. ТОИ