Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан С. Н.Филимонов

Рабочая программа дисциплины

Квантовая теория твердого тела

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: **Фундаментальная и прикладная физика**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости

ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать

2. Задачи освоения дисциплины

- Освоить понятийный аппарат и методы квантовой теории твердого тела.
- Научиться применять понятийный аппарат и методы квантовой теории твердого тела для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Теория твердого тела, Математический анализ, Линейная алгебра и аналитическая геометрия, Дифференциальные уравнения, Теория вероятностей, Теория функций комплексного переменного, Общая физика, Классическая механика, Квантовая механика, Методы математической физики.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 32 ч.
- -практические занятия: 0 ч.
 - в том числе практическая подготовка: 5 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основы зонной теории твердых тел.

Основные положения зонной теории твердых тел. Граничные условия Борна– Кармана. Теорема Блоха. Свойства блоховских функций. Свойства электронного газа в основном состоянии. Энергетические зоны в одномерном случае.

Тема 2. Теория металлов.

Основные предположения модели Друде и Зоммерфельда. Статическая электропроводность металла. Теплопроводность металла. Закон Видемана-Франца. Недостатки теории свободных электронов.

Тема 3. Уравнение Шредингера.

Адиабатическое и одноэлектронное приближение. Вариационный метод Ритца. Метод самосогласованного поля Хартри. Уравнения Хартри и Хартри—Фока.

Тема 4. Энергетические зоны и классификация кристаллов по характеру зонного спектра.

Схема расширенной и приведенной зон. Энергетическая щель. Теория энергетических зон. Классификация кристаллов по характеру зонного спектра. Свойства симметрии и законов дисперсии. Зоны Бриллюэна. Поверхность Ферми. Плотность состояний. Метод Харрисона для построения поверхности Ферми.

Тема 5. Уровни электрона в периодическом потенциале.

Общий подход к решению уравнения Шредингера в случае слабого потенциала. Теория возмущения и слабые периодические потенциалы. Уровни энергии вблизи Брэгговской плоскости. Метод сильной связи (общая формулировка). Общие свойства электронного спектра в приближении сильной связи. Применение метода для расчета электронных уровней ГЦК кристалла.

Тема 6. Методы зонной структуры.

Метод ячеек. Метод присоединенных плоских волн (ППВ) и Корринги, Кона и Ростокера (ККР). Метод ортогонализованных плоских волн (ОПВ) и псевдопотенциала. Линейные и полно-потенциальные методы расчета (ЛППВ и ЛМТО).

Тема 7. Взаимодействие между электронами.

Экранирование статического поля и поля примеси. Теория экранировки Томаса-Ферми и Линдхарта. Эффект Кона. Диэлектрическая проницаемость в полупроводниках и диэлектриках. Плазменные колебания. Приближение Хартри—Фока с учетом экранировки.

Тема 8. Оптические свойства твердых тел.

Макроскопическая и микроскопическая теория оптических свойств. Соотношения Крамерса–Кронига. Дисперсия и поглощение. Поглощение решеткой. Многофононные процессы. Внутризонные и межзонные переходы. Взаимодействие с электронами проводимости.

Тема 9. Магнитные явления в кристаллах.

Диамагнетизм и парамагнетизм. Взаимодействие твердых тел с магнитным полем. Орбитальная магнитная восприимчивость. Восприимчивость диэлектриков с полностью и частично заполненными атомными оболочками. Ларморовский диамагнетизм. Правила Хунда. Закон Кюри–Вейса. Восприимчивость металлов. Электростатическая природа магнитного взаимодействия. Магнитные свойства двухэлектронной системы (синглетные и триплетные состояния).

Тема 10. Спиновые гамильтонианы и модель Гейзенберга.

Типы обменного взаимодействия: прямой обмен, сверхобмен, косвенный обмен. Локализованные моменты в сплавах. Магнитное упорядочение. Основное состояние Гейзенберговских ферро-антиферромагнетиков. Спиновые волны. Поправки к закону Кюри. Теория молекулярного поля.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине осуществляется путем контроля посещаемости и устного опроса и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность зачета 1 час.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=21883.
- б) Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» https://www.tsu.ru/sveden/education/eduop/
 - в) План семинарских / практических занятий по дисциплине.
 - г) Методические указания по организации самостоятельной работы студентов.

Самостоятельная работа студента включает:

- углубленное теоретическое изучение разделов курса при подготовке к лекционным и практическим занятиям;
- подготовку к обсуждению материала, в том числе самостоятельный поиск необходимых источников информации, включая научно-образовательные ресурсы сети Интернет;
 - подготовку к зачету.

Вопросы, вынесенные на самостоятельное изучение.

- 1. Описание эффекта Холла и магнетосопротивления в рамках теории Друде и Зоммерфельда.
- 2. МТ-приближение для кристаллического потенциала. Современные подходы для улучшения МТ-приближения.
- 3. За пределами приближения независимых электронов. Дальнейшие возможности улучшения эффектов обмена и корреляций.
 - 4. Полно-потенциальные методы расчета зонной структуры.
 - 5. Экспериментальные методы исследования зонных структур и поверхности.
- 6. Учет дальнодействующего вклада в потенциал методом парциальных волн. Сингулярность экранирования и эффект Кона.
 - 7. Метод псевдопотенциала: современное представление и его эволюция.
- 8. Современные программные комплексы для расчетов электронного спектра (Wien 2k, VASP, LMTO 47)
- 9. Методы интерполяции и интегрирования в пространстве волнового вектора. Линейный метод интерполяции. Квадратичный метод интерполяции. Метод тетраэдронов.
- 10. Уравнения движения электронов в представлении Ванье. Примесные уровни. Представление экситонов. Рассеяние электронов примесями.
 - 11. Правила Хунда и их применение к твердому телу.
 - 12. Парамагнетизм Паули и диамагнетизм электронов проводимости.
 - 13. Модель Изинга для описания магнитного поведения кристаллов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Киттель Ч. Введение в физику твердого тела / Ч. Киттель. –М.: Наука, 1978. 791 с.
- Матухин В.Л. Физика твердого тела / В.Л. Матухин [и др.]. Санкт-Петербург: Лань, 2016. 218 с.

- Оура К. Введение в физику поверхности / К. Оура [и др.]. М.: Наука, 2006. 490 с.
- Дорфман Я.Г. Магнитные свойства и строение вещества / Я.Г. Дорфман. М: Изд-во ЛКИ, 2010.-376 с.
 - б) дополнительная литература:
- Ашкрофт Н. Физика твердого тела / Н. Ашкрофт, Н. Мермин. М.: Мир, 1979. В 2 томах.
 - Киттель Ч. Квантовая теория твердых тел / Ч. Киттель. М.: Наука, 1967. 492 с.
 - Блекмор Дж. Физика твердого тела / Дж. Блекмор. М.: Мир, 1988. 608 с.
- Займан Дж. Принципы физики твердого тела/ Дж. Займан. М.: Мир, 1974. 416 с.
 - Харрисон У. Теория твердого тела / У. Харрисон. М.: Мир, 1972. 616 с.
- Слэтер Дж. Методы самосогласованного поля для молекул и твердых тел / Дж. Слэтер. Мир, 1978. 639 с.
- Теория ферромагнетизма металлов и сплавов / Под ред. С.В. Вонсовского. М.: Изд-во иностранной литературы, 1963. 538 с.
- Немошкаленко В.В. Методы вычислительной физики в теории твердого тела / В.В. Немошкаленко, В.И. Антонов. Киев: Наукова Думка, 1985. 408 с.
- Вонсовский С.В. Квантовая физика твердого тела / С.В. Вонсовский, М.И. Кацнельсон. М.: Наука, 1983. 336 с.
- Крэкнелл А. Поверхность Ферми / А. Крэкнелл, К. Уонг. М.: Атомиздат, 1978. 352 с.
 - Нокс Р. Симметрия в твердом теле / Р. Нокс, А. Голд. М.: Наука, 1979. 424 с.
- Каллуэй Дж. Теория энергетической зонной структуры / Дж. Каллуэй. М.: Мир, 1969.-360 с.
- Джонс Г. Теория зон Бриллюэна и электронные состояния в кристалле / Г. Джонс. М.: Мир, 1968.-264 с.
 - Маделунг О. Теория твердого тела / О. Маделунг. М.: Наука, 1980. 416 с.
- Достижения электронной теории металлов / Под редакцией П. Цише, Г. Леммана. М.: Мир, 1984. В 2 томах.
- Матиас Л.Ф. Расчет электронных энергетических зон с помощью симметризованных плоских волн / Л.Ф. Матиас, Дж. Вуд, А.С. Свитендик. В кн.: Вычислительные методы в теории твердого тела / под. ред. А.А. Овчинникова. М.: Мир, 1975. С. 75–163.
- Кулькова С.Е. Линейные методы расчета зонной структуры твердых тел / С.Е. Кулькова. Томск: Изд-во ТГУ, 2001. 56 с.
- Хейне В. Теория псевдопотенциала / В. Хейне, М. Коен, Д. Уейер. М.: Мир, 1973. 557 с.
- Харрисон У. Псевдопотенциалы в теории металлов / У. Харрисон. М.: Мир, 1968. 366 с.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы
 - Введение в зонную теорию твердых тел https://infopedia.su/3xeb6.html
 - Примеры зон Бриллюэна http://lampx.tugraz.at/~hadley/ss1/bzones
- Квантовая механика и квантовая теория поля, в том числе современные квантовомеханические методы теории твердого тела

http://www.theoretical-physics.net/dev/quantum/main.html-...

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook); системы компьютерной вёрстки LaTex;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
 - Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
 - Электронная библиотека (репозиторий) ТГУ –

http://vital.lib.tsu.ru/vital/access/manager/Index

- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- 9EC ZNANIUM.com https://znanium.com/
- 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Кулькова Светлана Евгеньевна, доктор физико-математических наук, профессор, кафедра теоретической физики физического факультета ТГУ, профессор.