Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Факультет инновационных технологий

УТВЕРЖДАЮ:

Руководитель ОПОП

О.В. Вусович 16» мая 2023 г.

Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине

Методы диагностики материалов и процессов

по направлению подготовки

27.03.05 Инноватика

Направленность (профиль) подготовки: Управление инновациями в наукоемких технологиях

Форма обучения Очная

Квалификация **Бакалавр**

1. Планируемые результаты освоения дисциплины

Результаты освоения дисциплины (индикатор достижения компетенции)	Планируемые образовательные результаты (ОР) обучения по дисциплине
ИОПК-1.1 Знает основные положения, законы и методы в области естественных, технических наук и математики.	ОР 1.1.1 Демонстрирует знание связи между размерностью, структурой и свойствам наноматериалов; знает основные особенности механических и физических свойств наноматериалов. ОР 1.1.2 Классифицирует наноматериалы по геометрической размерности и функциональному назначению; устанавливает зависимость между размерностью, строением и свойствами наноматериалов. Результаты обучения проверяются во время текущего контроля знаний, на практических работах, а также на зачете.
ИОПК-1.2 Способен выбирать необходимые методы математики, естественных и технических наук для анализа профессиональных задач.	ОР 1.2.1 Студент, используя понятийный аппарат в области наноматериалов и нанотехнологий, способен выбрать наноматериал или нанотехнологию его изготовления для конкретного вида изделия, исходя из назначения иусловий эксплуатации изделия. ОР 1.2.2 Студент, имея представление об основных технологиях получения наночастиц и наноматериалов, производства изделий из наноматериалов, нормативных документах на материалы и технологии, способен сделать конкретный их выбор при анализе профессиональных задач. Результаты обучения проверяются во время текущего контроля знаний, на практических работах.
ИОПК-3.1 Способен выполнять анализ динамических свойств технических систем на модельном или физическом уровне. ИОПК-6.2 Выбирает современные	ОР 2.1.1 Студент, используя понятийный аппарат из области наноматериалов и нанотехнологий, устанавливает зависимость между размером, строением, свойствами наноматериалов. ОР 2.1.2 Студент анализирует основные свойства наноматериалов и способен сделать прогноз их стабильности при хранении и эксплуатации. Результаты обучения проверяются во время текущего контроля знаний, на практических работах, а также на зачете. ОР 6.2.1 Студент выбирает наноматериалы и
технические средства и технологии, в том числе с учетом экологических последствий их применения при разработке	нанотехнологии с учетом назначения и функциональных свойств, а также их воздействия на окружающую среду при

инновационног	о проекта.		разработке инновационного проекта. ОР 6.2.2 Студент использует нормативные документы для контроля безопасности
			наноматериалов и нанотехнологий при
			разработке инновационного проекта.
			Результаты обучения проверяются во время
			текущего контроля знаний, на практических
			работах, а также на зачете
ИОПК-6.4	Умеет	обосновывать	ОР 6.4.1 Студент понимает нормативную
техническое	решение	на основе	документацию, регламентирующую производ-
нормативных		документов,	ство и применение нанопродукции.
регламентирую	щих НИОКР		ОР 6.4.2 Студент выбирает и использует
			нормативные документы при разработке и
			оформлении технологической документации на
			стадии НИОКР, связанной с производством
			нанопродукции и(или) нанотехнологий.
			Результаты обучения проверяются во время
			текущего контроля знаний, на практических
			работах, а также на зачете

2. Этапы достижения образовательных результатов в процессе освоения дисциплины

№	Разделы и(или) темы дисциплин	Образовательные результаты	Формы текущего контроля и промежуточной аттестации
	Тема 1. Введение в мир	ИОПК-1.1	Текущий контроль:
	наноматериалов и	ИОПК-1.2	Тест
1.	нанотехнологий		Практическая работа
1.	нанотехнологии		Промежуточная
			аттестация:
			Зачет
	Тема 2. Наноматериалы и их	ИОПК-1.1	Текущий контроль:
	классификации	ИОПК-1.2	Tecm
2.	-	ИОПК-2.1	Практическая работа
			Промежуточная
			аттестация:
	т 2.07	нопи 1 1	Зачет
	Тема 3. Объемные	ИОПК-1.1	Текущий контроль: Тест
	наноматериалы (3D) и	ИОПК-1.2	Практическая работа
3.	технологии их получения	ИОПК-2.1	Промежуточная
			аттестация:
			Зачет
	Тема 4. 0D наноматериалы и	ИОПК-1.1	Текущий контроль:
	<u> </u>	ИОПК-1.2	Tecm
1	технологии их получения	ИОПК-2.1	Практическая работа
4.		110111(2.1	Промежуточная
			аттестация:
			Зачет
5.	Тема 5. 1D наноматериалы и	ИОПК-1.1	Текущий контроль:

	технологии их получения	ИОПК-1.2 ИОПК-2.1	Тест Практическая работа Промежуточная аттестация: Зачет
6.	Тема 6. 2D наноматериалы и технологии их получения	ИОПК-1.1 ИОПК-1.2	Текущий контроль: Тест Практическая работа Промежуточная аттестация: Зачет
7.	Тема 7. Основные методы исследования, способы диагностики нанообъектов.	ИОПК-1.1 ИОПК-1.2	Текущий контроль: Тест Практическая работа Промежуточная аттестация: Зачет
8.	Тема 8. Наноиндустрия. Нормативная документация. Наноэкология.	ИОПК-1.1 ИОПК-1.2 ИОПК-2.1	Текущий контроль: Тест Практическая работа Промежуточная аттестация: Зачет

3. Оценочные средства для проведения текущего контроля и методические материалы, определяющие процедуру их оценивания

Текущий контроль проводится в течение семестра с целью определения уровня усвоения обучающимися знаний, формирования умений и навыков, своевременного выявления преподавателем недостатков в подготовке обучающихся и принятия необходимых мер по ее корректировке, а также для совершенствования методики обучения, организации учебной работы, и фиксируется в форме контрольной точки не менее одного раза в семестр.

3.1. Тест

Тестовые задания предусматривают закрепление теоретических знаний, полученных студентом во время занятий по данной дисциплине. Их назначение — углубить знания студентов по отдельным вопросам, систематизировать полученные знания, выявить умение проверять свои знания в работе с конкретными материалами. При подготовке к решению тестовых заданий рекомендуется повторить материалы по пройденным темам.

На выполнение теста отводится от 20 до 40 минут в зависимости от темы.

Банк вопросов тестов находиться в электронном курсе URL: https://moodle.tsu.ru/course/view.php?id=19794

Примеры вопросов теста

- 1. Что такое квантовая точка?
- Квантовая точка представляет собой нанообъект одного материала находящийся на матрице из другого материала;
- Элементарная структура квантового излучения;
- Наноразмерный разрыв в электромагнитном излучении;

- Квант, находящийся в электромагнитном поле;
- 2. Как меняется вклад межфазной области в общие свойства объекта при уменьшении его размера?
 - При уменьшении размера объекта вклад межфазной области в общие свойства объекта уменьшается;
 - При уменьшении размера объекта вклад межфазной области в общие свойства объекта увеличивается;
 - При уменьшении размера объекта вклад межфазной области в общие свойства объекта проходит через максимум при 100 нм;
 - При уменьшении размера объекта вклад межфазной области в общие свойства объекта проходит через минимум при 100 нм.
 - 3. Что такое размерный эффект в технологии наноматериалов?
 - Изменение свойств нанообъектов в зависимости от размера элементов их структуры;
 - Изменение размера нанообъектов в зависимости от внешних условий;
 - Изменение свойств нанообъектов в зависимости от внешних условий;
 - Изменение размера нанообъектов в зависимости от состава.

Критерии оценивания теста

Оценка	Характеристика ответа
Зачтено	от 80 % правильных ответов
Не зачтено	менее 80 % правильных ответов

3.2. Практические работы

Главная цель практической или работы заключается в выработке у студента практических умений, связанных с решением определенных задач в области наноматериалов и нанотехнологий, с обобщением и интерпретацией тех или иных исследовательских материалов. Кроме того, ожидается, что результаты практических занятий будут впоследствии использоваться учащимся для освоения новых тем.

При подготовке к выполнению практического задания необходимо повторить лекции и методическое указание по теме выполняемого задания.

При выполнении задания необходимо внимательно изучить предлагаемый материал, получить от преподавателя на занятии раздаточный материал и в соответствии с заданием, изложенном в методическом указании по теме практической работы, выполнить работу и написав отчет. В конце занятия необходимо сдать отчет преподавателю в виде собеседования по теме работы.

Отчет о работе оформляется в тетради и должен содержать название, цель работы, графики, подробный анализ полученных результатов с изложением выводов.

№ п/п	Темы практических занятий	
1.	Классификация наноматериалов и нанотехнологий	
2.	Оценка доли поверхностных атомов в наночастицах	
3.	Изучение свойств наночастиц	
4.	Изучение структуры углеродных наноматериалов	
5.	Изучение структуры консолидированных наноматериалов	

6.	Изучение свойств смазочно-охлаждающих жидкостей, модифицированных	
	углеродными микро- и наночастицами	
7.	Нанотехнологии для космоса	
8.	Нормативные документы, регламентирующие безопасность наноматериалов при	
	применении и на производстве	

1	re
	ĸ
-	

Оценка	Характеристика ответа	рит ери
Зачтено	Студент знает и понимает конечную цель и задачи работы. Работа должна быть выполнена полностью, правильно оформлена в соответствии с заданием. При необходимости должна содержать правильно оформленную графическую часть.	и оце нив ани я
Не зачтено	Работа выполнена не полностью или неправильно. Студент не понимает цель и задачи работы, допускает грубые ошибки в написании и оформлении отчета, испытывает затруднения в формулировке собственных суждений, неспособен ответить на дополнительные вопросы	пра кти ческ их рабо т

4. Оценочные средства для проведения промежуточной аттестации

Критерии оценивания зачета представлены в разделе 10 Рабочей программы дисциплины «Технологии получения наночастиц. Нанотехнологии».

Зачет проводится в устно-письменной форме с ответами на теоретические вопросы и решением задачи.

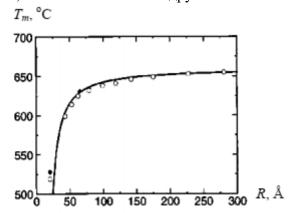
Теоретические вопросы для зачета

- 1. Какие объекты являются предметом исследования науки, называемой «Нанотехнология»
- 2. Приведите одно из наиболее употребляемых определений нанообъекта.
- 3. Что такое волна де Бройля?
- 4. Почему считается, что волна де Бройля определяет геометрические параметры нанообъектов?
- 5. Что такое критический размер нанообъекта?

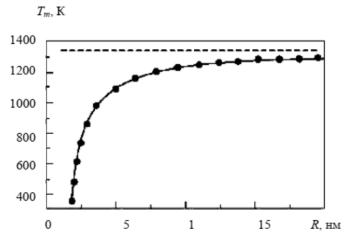
- 6. Почему количество поверхностных атомов является одним из критериев отличающих нанообъекты от других объектов исследования?
- 7. Что называют наноматериалами?
- 8. Что включает в себя понятие технология?
- 9. Что такое нанотехнология? Определение.
- 10. Чем объясняется химическая и каталитическая активность нанообъектов и наноструктурированных материалов?
- 13. Какие классические размерные эффекты наблюдаются в нанообъектах?
- 14. В чем причина изменения электрофизических параметров наноматериалов?
- 15. На чем базируются принципы самоорганизации наноструктур?
- 16. Как силы отталкивания и притяжения зависят от расстояния между атомами?
- 17. В каких материалах при переходе к наноразмерам становятся существенными квантовые ограничения поведения элементарных частиц?
- 18. Как изменяется спектр энергий электрона при понижении размерности объекта?
- 19. Перечислите физические причины специфики поведения нанообъектов.
- 20. Что лежит в основе общепринятой классификации нанообъектов?
- 21. Дайте определение 0-D нанообъекта. Примеры.
- 22. Дайте определение 1-D нанообъекта. Примеры.
- 23. Дайте определение 2-D нанообъекта. Примеры.
- 24. Классификация наноматериалов.
- 25. Какие две технологические парадигмы имеют место в нанотехнологии?
- 26. Какое главное ограничение на использование технологической парадигмы «снизу вверх»?
- 27. Какие два класса процессов можно выделить при изготовлении наночастиц?
- 28. Что такое диспергирование твердых тел?
- 29. В чем особенности диспергирования при изготовлении 0D нанообъектов?
- 30. Приведите примеры устройств, используемых для механического диспергирования твердых тел.
- 31. Что такое квантово-размерный эффект?
- 32. Что такое туннельный эффект?
- 33. Что такое вискеры и к какой группе наноматериалов их относят?
- 34. Отличие квантовых точек от кластеров
- 35. Области применения кластеров
- 36. Основные свойства кластеров
- 37. Этапы получения консолидированных материалов из нанопорошков
- 38. Какие две группы процессов используемых для нанесения покрытий вы знаете?
- 39. Какие цели преследует нанесение покрытий.
- 40. Какие свойства наночастиц подобны свойствам отдельных атомов?
- 41. Какие две группы процессов используемых для нанесения покрытий вы знаете?
- 42. Что такое гетероструктуры?
- 43. В чем достоинства методов осаждения из паровой фазы?
- 44. Что такое золь-гель метод?
- 45. Что такое эпитаксия?
- 46. Какие разновидности эпитаксиальных процессов вы знаете?
- 48. Жидкофазная эпитаксия. Достоинства недостатки.
- 49. Газофазная эпитаксия. Достоинства недостатки.
- 50. Молекулярно-лучевая (пучковая) эпитаксия. Достоинства недостатки.
- 51. Что такое фуллерен?
- 52. Что такое фуллерит?
- 53. Что такое графен?
- 54. Где могут быть использованы углеродные наноматериалы?

- 55. Технологии получения наноструктуры в 3D материалах
- 56. В чём суть метода газофазового осаждения?
- 57. На чём основано действие самоочищающихся покрытий?
- 58. В каких случаях равноканальное угловое прессование?
- 59. Основные способы получения наноструктуры в массивных металлических материалах

Задачи для зачета:


- 1. Строение крыла представителей отряда чешуекрылых натолкнуло несколько групп нанотехнологов на создание наноструктур, которые могут в будущем существенно модернизировать уже существующие на данный момент технологии по созданию солнечных батарей.
 - Крылья какого насекомого послужили примером для создания подобных наноструктур: стрекозы; б) мухи; в) бабочки; г) осы; д) богомола; е) блохи (1 балл)
 - Как вы думаете, какие преимущества получат солнечные батареи разработанные на основе

нанотехнологий? (2 балла)

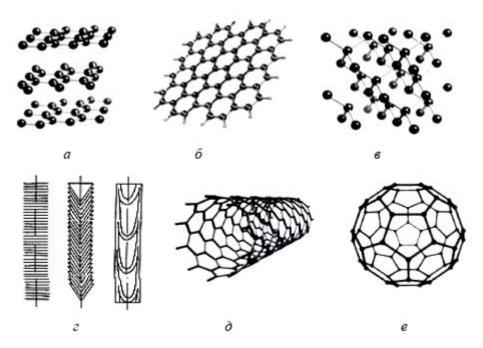

- Как вы думаете, зачем подобные наноструктуры этим насекомым? (4 балла)
- Какие приборы можно модернизировать, если использовать при их изготовлении наноструктуры схожие с теми, которые есть у насекомых. (1 балл)

Температура плавления наночастиц

- 2. На основе анализа представленных на рис. 1 и 2 графиков зависимостей температуры плавления Тт наночастиц алюминия и золота от радиуса R требуется:
- 1) указать Тт частиц алюминия с радиусами 5 нм и 150 Å;
- 2) указать радиус частиц алюминия, выше которого Тт практически не изменяется и становится такой же, как у образцов алюминия обычного размера;
- 3) определить, на сколько градусов меньше Tm у наночастицы алюминия с радиусом 3 нм, чем у образца алюминия обычного размера;
- 4) определить, на сколько процентов меньше Tm у наночастицы алюминия с радиусом 5 нм, чем с радиусом 125 Å;
- 5) определить, на сколько градусов меньше Tm у образца алюминия обычного размера, чем у образца золота обычного размера;
- 6) определить, во сколько раз меньше Tm у наночастицы алюминия с радиусом 50 Å, чем у наночастицы золота с радиусом 4 нм;
- 7) указать радиусы наночастиц алюминия и золота, которым соответствует значение Tm = 600 °C, и определить, какой из них больше другого и во сколько раз.

 $Puc.\ 1.\$ График зависимости температуры плавления T_m наночастиц алюминия от радиуса R

 $Puc.\ 2.\ \Gamma$ рафик зависимости температуры плавления T_m наночастиц золота от радиуса R


3. 1. В таблице указаны различные аллотропные модификации углерода, на рис. 1 представлены в произвольном порядке схематические изображения структуры этих модификаций.

В работе требуется установить для различных аллотропных модификаций углерода соответствующие им схематические изображения структуры, показанные на рис. 1, и занести в таблицу позиции, которыми они обозначены.

 Таблица

 Аллотропные модификации углерода и их структура

Аллотропные модификации углерода	Структура аллотропных модификаций углерода (позиция на рис. 1)
Графит	
Алмаз	
Фуллерены	
Нанотрубки	
Нановолокна	
Графен	

 $Puc.\ 1.$ Схематические изображения кристаллической структуры аллотропных модификаций углерода