Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Теория тепло- и масообмена

по направлению подготовки

16.04.01 Техническая физика

Направленность (профиль) подготовки: **Компьютерный инжиниринг высокоэнергетических систем**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП А.Ю. Крайнов А.В. Шваб Л.Л. Миньков

Председатель УМК В.А. Скрипняк

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-5 Способен осуществлять научный поиск и разработку новых перспективных подходов и методов к решению профессиональных задач, участвовать в научной и инновационной деятельности.

УК-6 Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 5.1 Знать основные подходы к научному поиску и разработке новых перспективных подходов и методов к решению профессиональных задач в избранной области технической физики.
- ИОПК 5.2 Уметь анализировать и подготавливать научные материалы для выступлений на конференциях, выставках и презентациях.
- ИОПК 5.3 Владеть методиками профессионального роста, активного участия в научной и инновационной деятельности.
- ИУК 6.1 Разрабатывает стратегию личностного и профессионального развития на основе соотнесения собственных целей и возможностей с развитием избранной сферы профессиональной деятельности.
- ИУК 6.2 Реализует и корректирует стратегию личностного и профессионального развития с учетом конъюнктуры и перспектив развития рынка труда.
- ИУК 6.3 Оценивает результаты реализации стратегии личностного и профессионального развития на основе анализа (рефлексии) своей деятельности и внешних суждений.

2. Задачи освоения дисциплины

- -Изучение фундаментальных положений теорий гидроаэродинамики и тепломассопереноса.
- Владение методами математического моделирования при решении фундаментальных и технологических задач гидроаэродинамики и тепломассопереноса.
- Применение теоретических знаний и методов математического моделирования к процессам и аппаратам в энергетической, химической и атомной промышленности, чтобы быть востребованным к практической профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- -лекции: 12 ч.
- -лабораторные: 20 ч.
- -практические занятия: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

- Тема 1. Теплопроводность.
- Тема 2. Конвективный теплообмен.
- Тема 3. Теплоотдача при фазовых превращениях.
- Тема 4. Тепломассоперенос в двухкомпонентных средах.
- Тема 5. Теплообмен излучением.
- Тема 6. Численные методы решения задач тепломассопереноса.

1. Теплопроводность.

Основные законы и дифференциальные уравнения теории теплопроводности. Условия однозначности для процессов теплопроводности. Теплопроводность при стационарном режиме. Нестационарные процессы теплопроводности. Решение актуальных задач теплопроводности.

2. Конвективный теплообмен.

Жидкости и газы как сплошные деформированные среды. Основные дифференциальные уравнения переноса импульса, тепла, вещества и энергии. Краевые условия. Перенос импульса и тепла при турбулентном течении. Основные положения теории пограничного слоя. Теория теплового подобия. Теплопередача в каналах и трубах. Теплопередача при внешнем обтекании тел. Свободные сдвиговые течения. Явления свободной конвекции. Теплоотдача при больших скоростях.

3. Теплоотдача при фазовых превращениях.

Теплообмен при конденсации пара. Теория плёночной конденсации по Нуссельту. Отдельные задачи пленочной и капельной конденсации. Теплообмен при кипении жидкости. Зависимость теплового потока от температурного напора. Кризисы кипения.

4. Тепло- и массообмен в двухкомпонентных средах.

Основные понятия. Дифференциальные уравнения тепло- и массообмена. Тепло- и массоотдача. Критерии подобия. Тройная аналогия.

5. Теплообмен излучением.

Явление лучистого теплообмена. Основные законы теплового излучения. Теплообмен излучением между твердыми телами. Теплообмен в поглощающих и излучающих средах. Сложный теплообмен.

6. Численные методы решения задач гидроаэродинамики и тепломассопереноса.

Современные численные методы решения уравнений переноса импульса, теплоты, вещества, энергии и уравнений переноса транспортабельной скалярной субстанции.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, тестов по лекционному материалу, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=22455
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Рейзлин В. Математическое моделирование. Учебное пособие. М.: Юрайт, 2016. 128с.:
- Карслоу Г., Егер Д. Теплопроводность твердых тел. Наука, Москва, 1964,487с.; Себеси Т., Бредшоу П. Конвективный теплообмен. Москва, Мир,1987, 590 с.;
 - Шваб А.В. Теория конвективного теплообмена/ Томск, Изд. НТЛ, 2007, 187с.;
- Исаченко В.П., Осипова В.А., Сукомел А.С.Теплопередача. М. Энергоиздат. 1981,417с.;
- Еккерт Э.Р., Дрейк Р.М. Теория тепло- и массообмена М.-Л.госэнергоиздат,1961, 680с.;
- Гребер Г., Эрк С., Григуль У. Основы учения о теплообмене. М.: Изд.Ин.лит.,1958.;
- Арутюнов В.А., Капитанов В.А., Левицкий И.А., Шибалов С.Н. Теплофизика, теплотехника, теплообмен. Тепломассоперенос. Топливо и огнеупоры. Тепловая работа печей. Лабораторный практикум Москва: МИСиС.
 - б) дополнительная литература:
- Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987, 491 с.;
- Липанов А.М. Теоретическая гидромеханика ньютоновских сред.–М.:Наука, 2011. 551с.;
 - Кутателадзе С.С. Основы теории теплообмена.-Новосибирск: Наука, 1970, 659с.;
- Самарский А.А. Вабищевич П.Н. Вычислительная теплопередача.– М.: Едиториал УРСС, 2003. 784 с.;
- Патанкар С. Численные методы решения задач теплообмена и динамики жидкости.-М.: Энергоатомиздат, 1984, 150с.; 7. Бэтчелор Дж. Введение в динамику жидкости.-М.:Мир, 1973.-758с.;
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. T.VI. Гидродинамика.-М.: Наука, 1988.-736с.
 - в) ресурсы сети Интернет:
 - Общероссийская Сеть КонсультантПлюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

а) лицензионное и свободно распространяемое программное обеспечение:

- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).

б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ
- http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ
- http://vital.lib.tsu.ru/vital/access/manager/Index
- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- 9EC ZNANIUM.com https://znanium.com/
- 96C IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатории, оборудованные ...

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Шваб Александр Вениаминович, д.ф.-м.н., профессор, ТГУ, кафедра прикладной аэромеханики, профессор.