МИНОБРНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт прикладной математики и компьютерных наук

УТВЕРЖДАЮ

Директор института прикладной

математики и компьютерных наук

А.В. Замятин

2022 г.

Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (Оценочные средства по дисциплине)

Непрерывные математические модели

по направлению подготовки

02.04.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Математика беспроводных сетей связи и интернета вещей

OC составил: д-р техн. наук, профессор Профессор кафедры прикладной математики

Collection

В.И. Смагин

Рецензент:

д-р физ.-мат. наук, профессор, профессор кафедры прикладной математики

А.Г. Дмитренко

Оценочные средства одобрены на заседании учебно-методической комиссии института прикладной математики и компьютерных наук (УМК ИПМКН).

Протокол от 12.05.2022 г. № 4

Председатель УМК ИПМКН, д-р техн. наук, профессор

С.П. С

С.П. Сущенко

Оценочные средства (ОС) являются элементом системы оценивания сформированности компетенций у обучающихся в целом или на определенном этапе ее формирования.

ОС разрабатывается в соответствии с рабочей программой (РП) дисциплины.

1. Компетенции и результаты обучения, формируемые в результате освоения дисциплины «Непрерывные математические модели»

		Код и наименование результатов обучения (планируемые	Критерии оценивания результатов обучения			
Компетенция	Индикатор компетенции	результаты обучения, характеризующие этапы формирования компетенций)	Отлично	Хорошо	Удовлетворительн о	Неудовлетворительно

УК-1. Способен	ИУК-1.1. Выявляет	ОР-1.1.1. Обучающийся	Демонстрация высокого	В целом успешные,	Фрагментарное,	Не имеет четкого
осуществлять	проблемную ситуацию,	сможет:	уровня знаний;	но содержащие	неполное знание	представления об
критический анализ	на основе системного	- использовать результаты	способность	отдельные пробелы	без грубых	изучаемом материале,
проблемных	подхода осуществляет	прикладной математики	самостоятельного анализа	знания в базовом	ошибок	допускает грубые
ситуаций на основе	её многофакторный	для освоения, адаптации	и реализации полученных	(стандартном) объёме	использования	ошибки при
системного	анализи диагностику.	новых методов решения	знаний. Знание	методов построения и	современных	использовании
подхода,		задач в области построения	математического аппарата	исследования	компьютерных	современных
вырабатывать		непрерывных	и современных	математических	технологий для	компьютерных
стратегию действий	ИУК-1.2. Осуществляет	математических моделей	компьютерных технологий	моделей,	решения задач из	технологий для
•	поиск, отбор и	реальных объектов.	для решения задач из	современных	области	решения задач из
	систематизацию		области экономики,	компьютерных	экономики,	области экономики,
	информации для	ОР-1.2.1. Обучающийся	непрерывных и	технологий для	непрерывных и	демонстрирует слабые
	определения	сможет:	дискретных	решения задач из	дискретных	знания непрерывных и
	альтернативных	- реализовать и	математических моделей	области экономики,	математических	дискретных
	вариантов	совершенствовать новые	экономики, социально-	непрерывных и	моделей	математических
	стратегических	методы решения	экономического	дискретных	экономики,	моделей экономики,
	решений в проблемной	прикладных задач при	прогнозирования,	математических	социально-	социально-
	ситуации.	построении непрерывных	логистики, управления в	моделей экономики,	экономического	экономического
		математических моделей	экономических системах,	социально-	прогнозирования,	прогнозирования,
	ИУК-1.3. Предлагает и	реальных объектов.	статистики, финансовой	экономического	логистики,	логистики, управления
	обосновывает		эконометрики, управления	прогнозирования,	управления в	в экономических
	стратегию действий с		инвестициями.	логистики,	экономических	системах, статистики,
	учетом ограничений,	ОР-1.3.1. Обучающийся		управления в	системах,	финансовой
	рисков и возможных	сможет:		экономических	статистики,	эконометрики,
	последствий.	- проводить качественный		системах, статистики,	финансовой	управления
		и количественный анализ		финансовой	эконометрики,	инвестициями.
		полученного решения с		эконометрики,	управления	
		целью построения		управления	инвестициями.	
		оригинального варианта		инвестициями.		
		непрерывных				
		математических моделей				
		реальных объектов.				
1						
		1	1	1	i e	1

1			,			
ПК-4. Способен управлять	ИПК-4.1. Осуществляет мониторинг и оценку	OP-4.1.1 Обучающийся сможет:	Демонстрация высокого уровня знаний;	В целом успешные, но содержащие	Фрагментарное, неполное знание	Не имеет четкого представления об
получением,	производительности	- разрабатывать	способность	отдельные пробелы	без грубых	изучаемом материале,
хранением,	обработки больших	непрерывные	самостоятельного анализа	знания в базовом	ошибок	допускает грубые
передачей,	данных.	математические модели в	и реализации полученных	(стандартном) объёме	использования	ошибки при
обработкой	данных.		знаний. Способность к	методов построения и		использовании
*	ИПК-4.2. Использует	i n		_ · · · · · · · ·	современных	
больших данных.	•	математики и	разработке оригинальных	исследования	компьютерных	современных
	методы и инструменты	информатики.	математических моделей	математических	технологий для	компьютерных
	получения, хранения,	OD 421 OF "	непрерывных процессов и	моделей,	решения задач из	технологий для
	передачи, обработки	ОР-4.2.1 Обучающийся	их использования для	современных	области	решения задач из
	больших данных	сможет:	решения научных и	компьютерных	экономики,	области экономики,
		- анализировать	практических задач.	технологий для	непрерывных и	демонстрирует слабые
		непрерывные	Способен разрабатывать	решения задач из	дискретных	знания непрерывных и
	ИПК-4.3.	математические модели	непрерывные	области экономики,	математических	дискретных
	Разрабатывает	для решения прикладных	математические модели и	непрерывных и	моделей	математических
	предложения по	задач профессиональной	проводить их анализ при	дискретных	экономики,	моделей экономики,
	повышению	деятельности.	решении задач в области	математических	социально-	социально-
	производительности		области экономики,	моделей экономики,	экономического	экономического
	обработки больших	ОР-4.3.1. Обучающийся	непрерывных и	социально-	прогнозирования,	прогнозирования,
	данных	сможет:	дискретных	экономического	логистики,	логистики, управления
		- разрабатывает и	математических моделей	прогнозирования,	управления в	в экономических
		анализирует новые	экономики, социально-	логистики,	экономических	системах, статистики,
		непрерывные	экономического	управления в	системах,	финансовой
		математические модели	прогнозирования,	экономических	статистики,	эконометрики,
		для прикладных задач	логистики, управления в	системах, статистики,	финансовой	управления
		профессиональной	экономических системах,	финансовой	эконометрики,	инвестициями.
		деятельности в области	статистики, финансовой	эконометрики,	управления	
		прикладной математики и	эконометрики, управления	управления	инвестициями.	
		информатики.	инвестициями.	инвестициями.		
1		1 1	,	,	1	

2. Этапы формирования компетенций и виды оценочных средств

No	Этапы формирования компетенций (разделы дисциплины)	Код и наименование результатов обучения	Вид оценочного средства (тесты, за дания, кейсы, вопросы и др.)
1.	Введение. основные понятия	OP-1.1.1, OP-1.2.1, OP-1.3.1., OP-4.1.1	вопросы, экзамен, конспект самоподготовки, опрос на занятиях, выступление (доклад) на занятии.
2.	Непрерывные математические модели с сосредоточенными параметрами	OP-1.1.1, OP-1.3.1., OP-4.1.1 , OP-4.2.1 , OP-4.3.1.	вопросы, экзамен, конспект самоподготовки, собеседование, опрос на занятиях, выступление (доклад) на занятии.
3	Примеры непрерывных математических моделей с сосредоточенными параметрами	OP-1.1.1, OP-1.2.1, OP-1.3.1., OP-4.1.1, OP-4.2.1.	задания, вопросы, экзамен, конспект самоподготовки, собеседование, опрос на занятиях, колоквиум.
4	Численные методы исследования непрерывных математических моделей с сосредоточенными параметрами	OP-1.1.1, OP-1.2.1, OP-1.3.1., OP-4.1.1, OP-4.2.1, OP-4.3.1.	вопросы, экзамен, конспект самоподготовки, собеседование, опрос на занятиях, выступление (доклад) на занятии.
5	Непрерывные математические модели с распределенными параметрами	OP-4.1.1, OP-4.2.1, OP-4.3.1.	вопросы, экзамен, конспект самоподготовки, опрос на занятиях, выступление (доклад) на занятии.

3. Типовые контрольные задания или иные материалы, необходимые для оценки образовательных результатов обучения

Для реализации задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в следующем составе.

3.1. Типовые задания для проведения текущего контроля успеваемости по дисциплине

- Контрольные вопросы

«Непрерывные математические модели»

- 1. Классификация методов построения моделей.
- 2. Характеристики математической модели.
- 3. Области применения непрерывных математических моделей.
- 4. Анализ устойчивости непрерывных математических моделей без запаздываний.
- 5. Анализ устойчивости непрерывных математических моделей с запаздываний.
- 6. Слабая теорема Харитонова.
- 7. Сильная теорема Харитонова.
- 8. Определение особых точек аттракторов динамических систем.
- 9. Жесткие задачи.
- 10. Метод шагов для моделей с запаздываниями.

11. Основные законы, используемые при построении непрерывных математических моделей.

Примерный перечень тестовых заданий

- 1. Классификация методов построения моделей.
- 2. Перечислите характеристики математической модели.
- 3. В чем суть робастной устойчивости непрерывных математических моделей?
- 4. Как определяются особые точки аттрактора?
- 5. Что такое жесткие задачи решения дифференциальных уравнений?
- 6. Какой порядок точности метода Кранка-Никольсона?
- 7. Перечислите основные законы, используемые при построении непрерывных математических моделей.

Типовое задание по дисциплине

«Непрерывные математические модели»

Название задания: Исследование аттракторов динамических систем. Модели хищникжертва

Залание

- 1. Исследовать модели а), б) и в). Найти особые точки для заданных значений параметров $\alpha, \beta, \gamma, \delta, \mu$, определить тип особой точки.
 - a) Модель «хищник-жертва»

$$\begin{cases} \dot{x} = \alpha x - \beta xy, & \alpha > 0, \ \beta \ge 0, \\ \dot{y} = -\gamma y + \delta xy, & \gamma > 0, \ \delta \ge 0. \end{cases}$$

б) Модель «хищник – жертва» с ограниченностью ресурса для жертв

$$\begin{cases} \dot{x} = \alpha x - \beta xy - \mu x^2, & \alpha > 0, \ \beta \geq 0, \ \mu > 0, \\ \dot{y} = -\gamma y + \delta xy, & \gamma > 0, \ \delta \geq 0. \end{cases}$$

в) Модель «хищник—жертва»

$$\begin{cases} \dot{x} = x - \alpha \frac{x}{1+x}y - \gamma x^2 \\ \dot{y} = -y + \beta \frac{x}{1+x}y \end{cases}.$$

3.2. Типовые задания для проведения промежуточной аттестации по дисциплине

- Вопросы к экзамену

- 1. Классификация математических моделей и методов моделирования.
- 2. Классификация методов построения моделей.
- 3. Идентификация.

- 4. Характеристики математической модели.
- 5. Классификация и виды непрерывных математических моделей.
- 6. Области применения непрерывных математических моделей.
- 7. Анализ устойчивости непрерывных математических моделей без запаздываний.
- 8. Анализ устойчивости непрерывных математических моделей с запаздываний.
- 9. Робастная устойчивость непрерывных математических моделей.
- 10. Слабая и сильная теоремы Харитонова.
- 11. Аттракторы динамических систем.
- 12. Определение особых точек.
- 13. Анализ аттракторов.
- 14. Применение аттракторов при передаче скрытой информации.
- 15. Методы Эйлера и Рунге-Кутта.
- 16. Устойчивость метода (сходимость).
- 17. Жесткие задачи.
- 18. Метод шагов для моделей с запаздываниями.
- 19. Метод Кранка-Никольсона. Применение ППП (Matlab, Mathcad) для численного решения обыкновенных дифференциальных уравнений.
- 20. Основные законы, используемые при построении непрерывных математических моделей.
 - 21. Непрерывная математическая модель вертикального движения ракеты.
 - 22. Модель электропривода.
 - 23. Модель робота-манипулятора. 23. Модель хищник-жертва.
 - 24. Модель делового цикла.

образовательных результатов обучения

- 25. Динамическая модель фирмы.
- 26. Модель миграции населения.
- 27. Модель управляемого портфеля ценных бумаг.

Экзаменационные билеты

Томский государственный университет ИПМКН Кафедра прикладной математики

Дисциплина: Непрерывные математические модели

- Экзамена	ационный билет	Nº 1	
1. Анализ устойчивости непрерывных	математических мо	делей без запаз;	дываний.
2. Определение особых точек аттракто	pa.		
Зав. кафедрой, д.т.н., профессор		/А.М. Горце	$\mathcal{B}/$
Томский государс	ственный универсиі	nem	
ν	<i>ИПМКН</i>		
Кафедра прик	ладной математик	и	
Дисциплина: Непреры	вные математическ	ие модели	
- Экзамена	ационный билет	N <u>º</u> 2	
1. Классификация и виды непрерывны	х математических м	оделей.	
2. Робастная устойчивость непрерывны	ых математических	моделей.	
Зав. кафедрой, д.т.н., профессор		/А.М. Горцес	$\mathcal{B}/$
4. Методические материалы,	определяющие	процедуры	оценивания

4.1. Методические материалы для оценки текущего контроля успеваемости по дисциплине.

Балльные оценки для форм контроля промежуточной аттестации представлены в таблице 1.

Таблица 1 – Балльные оценки

Форма контроля	Максимальный	Максимальный	Всего за семестр
	балл	балл на конец	
	промежуточной	семестра	
	аттестации		
Тестирование	15	20	35
Контрольная работа	15	20	35
Подготовка к экзамену			30
Нарастающий итог	30	70	100

Пересчет баллов в оценки за промежуточную аттестацию представлен в таблице 2. Таблица 2 — Пересчет баллов в оценки за промежуточную аттестацию

Баллы на дату текущего контроля	Оценка
≥ 90% от максимальной суммы баллов на дату промежуточной	5
аттестации (ПА)	
От 70% до 89% от максимальной суммы баллов на дату ПА	4
От 60% до 69% от максимальной суммы баллов на дату ПА	3
< 60% от максимальной суммы баллов на дату ПА	2

4.2. Методические материалы для проведения промежуточной аттестации по дисциплине.

Экзамен осуществляется в форме опроса по теоретической части дисциплины. На зачет студент допускается только после выполнения и сдачи преподавателю всех лабораторных работ.

Экзамен проставляется студентам, выполнившим все задания по лабораторным работам и ответившим на вопросы к экзамену с оценкой определенной по таблице 2.