Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Небесная механика

по направлению подготовки

24.04.03 Баллистика и гидроаэродинамика

Направленность (профиль) подготовки: **Баллистика ракетно-ствольных систем**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП К.С. Рогаев

Председатель УМК В.А. Скрипняк

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-6 Способен разрабатывать и использовать новые подходы и методы расчета объектов ракетно-космической техники с учетом аэродинамических и баллистических параметров.
- ОПК-7 Способен анализировать и обобщать результаты физического и численного моделирования, обоснованно выбирать аэродинамические и баллистические параметры ракет и космических аппаратов..
- ПК-1 Способен к проведению работ по обработке и анализу научно-технической информации и результатов исследований.
- ПК-3 Способен разрабатывать методики исследования динамических характеристик при моделировании движения летательных аппаратов.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 6.1 Знать передовые методы расчета объектов ракетно-космической техники с учетом аэродинамических и баллистических параметров
- ИОПК 6.2 Уметь разрабатывать и использовать новые подходы и методы расчета объектов ракетно-космической техники с учетом аэродинамических и баллистических параметров
- ИОПК 6.3 Владеть навыками анализа влияния аэродинамических и баллистических параметров на характеристики объектов ракетно-космической техники
- ИОПК 7.1 Знать способы учета аэродинамических и баллистических параметров ракет и космических аппаратов при физическом и численном моделировании
- ИОПК 7.2 Уметь выбирать аэродинамические и баллистические параметры ракет и космических аппаратов на основе анализа результатов моделирования
- ИОПК 7.3 Владеть навыками проведения и анализа результатов физического и численного моделирования
 - ИПК 1.1 Знает методы анализа научных данных
- ИПК 1.2 Умеет применять актуальную нормативную документацию в соответствующей области знаний.
- ИПК 1.3 Осуществляет организацию сбора и изучения научно-технической информации по теме исследований и разработок
 - ИПК 3.1 Знает основы теории движения летательных аппаратов
- ИПК 3.2 Умеет формулировать аспекты задач исследования, выбирать методы их решения и представлять результаты исследований
- ИПК 3.3 Осуществляет моделирование процессов динамики движения, аэродинамики , баллистики и управления полетом летательных аппаратов с учетом сложности систем и на основе современных научных знаний

2. Задачи освоения дисциплины

- Овладение студентами основами решения задач о движении естественных и искусственных небесных тел под действием реальных сил и определения их траекторий по результатам наблюдений;
- Овладение студентами математическим аппаратом кинематики и динамики космических объектов;
- Овладение студентами методами расчета возмущений гравитационного потенциала;
- Привитие студентам навыков математического моделирования движения искусственных спутников;

- Приобретение студентами основ фундаментальных знаний и представлений теории полета современных искусственных спутников, умения ставить теоретическую задачу, анализировать и выявлять параметры, необходимые для ее решения;
- Подготовка их к применению полученных знаний для решения практических задач, связанных с профилем будущей специальности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Динамика полета тел, стабилизируемых вращением.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

- -лекции: 12 ч.
- -практические занятия: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Предмет курса «Небесная механика». Исторический очерк. Основные характеристики Солнечной системы, Галактики, Метагалактики. Основные методы решения задач астродинамики.

Раздел 2. Системы координат и единиц в небесной механике.

Гелиоцентрическая и геоцентрическая системы единиц. Системы координат: вторая экваториальная геоцентрическая, топоцентрическая, географическая, первая экваториальная геоцентрическая, эллиптическая, относительные преобразования координат, координаты станций наблюдения на Земле. Измерение времени: универсальное время, звездное, эфемерное, юлианские дни.

- Раздел 3. Теория притяжения. Закон всемирного тяготения. Силовая функция материальной точки и системы материальных точек. Силовая функция тела. Притяжение тела материальной точкой. Силовая функция взаимного притяжения двух тел. Свойства силовых функций. Сферические функции. Разложение силовой функции тела по сферическим функциям и гармоническим многочленам. Разложение силовой функции взаимного притяжения двух тел по гармоническим многочленам. Силовая функция Земли.
- **Раздел 4.** Задача двух тел. Дифференциальные уравнения невозмущенного кеплеровского движения в абсолютной, барицентрической и относительной системах координат. Первые интегралы. Общий интеграл. Общие формулы невозмущенного кеплеровского движения. Уравнение невозмущенной орбиты. Орбитальные координаты.

Выражение пространственных координат через орбитальные. Кеплеровские элементы орбиты. Типы орбит. Эллиптическое движение: законы Кеплера, уравнение Кеплера. Вычисление координат ИСЗ в заданный момент времени по известным элементам орбиты. Разложение координат эллиптического движения в ряды Фурье и по степеням эксцентриситета. Гиперболическое движение. Предельные движения: круговое и параболическое. Прямолинейное движение. Видимость планеты с космического аппарата. Выбор орбиты, проходящей над станцией наблюдения.

Раздел 5. Определение орбиты ИСЗ. Определение орбиты по двум положениям. Метод Гаусса Метод Ламберта-Эйлера. Определение орбиты с помощью итераций по параметру орбиты, по истинной аномалии, по эксцентриситету. Определение орбиты по измерениям угловых координат метод Гаусса и метод Лапласа. Определение орбиты по смешанным данным.

Раздел 6. Возмущенное движение. Возмущающие эффекты: вековые и периодические возмущения. Возмущающие функции. Метод Лагранжа получения уравнений возмущенного движения. Уравнения Ньютона. Частные случаи. Вековые возмущения первого порядка. Вывод дифференциальных уравнений Лагранжа. Учет сжатия планеты, сопротивления атмосферы.

Раздел 7. Задача трех тел. Постановка задачи. Вывод дифференциальных уравнений движения. Ограниченная задача трех тел. Уравнения Нехвилла. Частные решения. Точки либрации.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

а) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Лысенко Л. Н. Теоретические основы баллистико-навигационного обеспечения космических полетов / Л. Н. Лысенко, В. В. Бетанов, Ф. В. Звягин; под общ. ред. Л. Н. Лысенко. М.: Изд-во МГТУ им. Н. Э. Баумана, 2014. 518 с.
- 2. Орлов А. Г. Бортовой ретрансляционный комплекс (БРК) спутника связи. Принципы работы, построение, параметры /
- Орлов А. Г., Севастьянов Н. Н. ; науч. ред. В. Н. Бранец. Томск : Издательский Дом Том. гос. ун-та, 2014. 205 с. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000491129

- 3. Селезнев В. П. Основы космической навигации / В. П. Селезнёв ; [ред. Н. В. Селезнёва]. Изд. 3-е. М.: ЛИБРОКОМ, 2013. 479 с.
- 4. Черноусько Ф. Л. Эволюция движений твердого тела относительно центра масс / Ф. Л. Черноусько, Л. Д. Акуленко,
- Д. Д. Лещенко. Ижевск [и др.]: Институт компьютерных исследований, 2015. 308 с.
- 5. Capderou M. Handbook of Satellite Orbits From Kepler to GPS / by Michel Capderou // Springer eBooks, 2014. XXIV, 922 p.–URL: http://dx.doi.org/10.1007/978-3-319-03416-4
 - б) дополнительная литература
 - 1. Эрике К. Космический полет. Т.1. -М.: Физматгиз, 1963.
 - 2. Субботин М.Ф. Введение в теоретическую астрономию. -М.: Наука, 1968.
 - в) ресурсы сети Интернет:

Все виды информационных ресурсов Научной библиотеки ТГУ. Информационные источники сети Интернет.

– Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
 - Электронный каталог Научной библиотеки ТГУ –

http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system

– Электронная библиотека (репозитарии) ТГУ –

http://vital.lib.tsu.ru/vital/access/manager/Index

- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- ЭБС ZNANIUM.com https://znanium.com/
- 3FC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

5. Информация о разработчиках

Биматов Владимир Исмагилович, д-р физ.-мат. наук, профессор каф. Динамики полета.