Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Влияние ионизирующих излучений на биосистемы

по направлению подготовки

06.04.01 Биология

Направленность (профиль) подготовки: **Фундаментальная и прикладная биология**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Симакова

Председатель УМК А.Л. Борисенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-4 Способен участвовать в проведении экологической экспертизы территорий и акваторий, а также технологических производств с использованием биологических методов оценки экологической и биологической безопасности.

ОПК-8 Способен использовать современную исследовательскую аппаратуру и вычислительную технику для решения инновационных задач в профессиональной деятельности.

ПК-2 Способен проводить основные этапы полевых и лабораторных исследований в соответствии с профилем (направленностью) магистерской программы.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-4.1 Понимает теоретические и методологические основы биологических методов оценки экологической и биологической безопасности

ИОПК-8.1 Демонстрирует понимание методических принципов полевых и лабораторных биологических исследований и типов используемой современной исследовательской аппаратуры

ИПК-2.2 Осуществляет подбор и модификацию методик исследования в соответствии с поставленными задачами и на основе знаний принципов полевых и лабораторных исследований

2. Задачи освоения дисциплины

- Освоить теоретические основы реакций живых систем разного уровня организации на воздействие ионизирующих излучений, рассмотреть современные представления радиационной безопасности для живых организмов.
- Изучить современные варианты прикладного применения ионизирующих излучений в практических сферах деятельности человека и условия обеспечения безопасности.
 - Сформировать объективный взгляд на современную радиобиологию.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования по следующим дисциплинам: «Физика», «Химия», «Цитология и гистология», «Физиология человека и животных», «Биохимия», «Радиобиология», «Радиоэкология», «Биофизика». Дисциплина «Влияние ионизирующих излучений на биосистемы» является логическим продолжением в цепи дисциплин по принципу «от простого к более сложному», и сама является основой для углубленного изучении специальных дисциплин.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-лекции: 8 ч. -семинар: 18 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. ВВЕДЕНИЕ Предмет, задачи, история развития, этапы и периоды становления наук о влиянии ИИ на биосистемы. Связь с другими науками и современные проблемы радиационной биофизики.

Тема 2. ФИЗИЧЕСКИЕ ОСНОВЫ РАДИОБИОЛОГИИ Основные сведения о строении вещества. Строение атомов. Массовое число, атомный номер. Явление изотопии. Естественная и искусственная радиоактивность. Основные виды ионизирующих излучений (ИИ), их свойства. Радиоактивный распад ядер, виды распада. Закон радиоактивного распада. Единицы активности радионуклидов. Использование радиоактивных изотопов в науке, медицине и производстве. Основы дозиметрии ИИ. Понятие о дозе. Единицы измерения дозы. Поглощенная и эквивалентная дозы. Методы дозиметрии ИИ: ионизационная камера, сцинтилляционный метод, химические методы дозиметрии.

Тема 3. ПОГЛОЩЕНИЕ ЭНЕРГИИ **ИОНИЗИРУЮЩИХ** ИЗЛУЧЕНИЙ ВЕЩЕСТВОМ Общий принцип Гроттгуса. Дискретный характер поглощения энергии ИИ. Взаимодействие ИИ с веществом. Возбуждение и ионизация атомов и молекул. Образование пар ионов. Линейная плотность ионизации (ЛПИ) и линейная передача энергии (ЛПЭ). Взаимодействие заряженных частиц с веществом. Особенности взаимодействия фотонного излучения с веществом: фотоэффект, эффект Комптона, образование электрон-позитронных пар. Поглощение нейтронного излучения: косвенная ионизация, наведенная радиоактивность. Особенности поглощения энергии ИИ биологическим веществом. Относительная биологическая эффективность (ОБЭ) ИИ. Связь относительной биологической эффективности с линейной передачей энергии. Зависимость ОБЭ от условий и объекта облучения.

Тема 4. ПРЯМОЕ ДЕЙСТВИЕ ИИ Миграция энергии и заряда. Кривые "доза-эффект". Принципы попадания и мишени. Количественные закономерности действия ИИ. Действие редко и плотноионизирующих излучений. Инактивирующая доза, одно- и многоударные процессы. Прямое действие ИИ на ферменты и нуклеиновые кислоты. Последовательность стадий прямого действия ИИ. Первичные физические процессы. Физико-химическая стадия действия ИИ. Химическая стадия действия ИИ. Миграция энергии излучения в биологических структурах. Модификация прямого повреждения макромолекул: кислородный эффект, влияние температуры, роль молекул-примесей.

Тема 5. КОСВЕННОЕ ДЕЙСТВИЕ ИИ Радиационно-химические превращения молекул воды. Влияние продуктов радиолиза воды на инактивацию молекул в растворах. Количественные характеристики косвенного действия ИИ. Эффект Дейла (разбавления). Радиочувствительность биомакромолекул. Модификация радиолиза макромолекул. Свободнорадикальные процессы в биосубстратах. Цепные свободнорадикальные реакции при действии ИИ. Образование перекисей и других продуктов окисления в облучаемых липидах. Роль свободных радикалов липидов в непрямом эффекте инактивации биомакромолекул.

Тема 6. ДЕЙСТВИЕ ИИ НА КЛЕТКУ Реакция клеток на облучение. Первичные физико-химические процессы в облученной клетке. Прямое и непрямое действие ИИ на клетки. Свободные радикалы в облученной клетке и методы их определения. Действие ИИ на макромолекулы и клеточные органеллы. Задержка деления клеток. Радиочувствительность на разных стадиях клеточного цикла. Количественные характеристики клеточной гибели. Зависимость радиочувствительности клеток от мощности и фракционирования дозы, линейной передачи энергии ИИ, числа и размеров

хромосом. Повреждение и репарация ДНК в облученной клетке. Формы клеточной гибели. Критерии гибели клеток. Репродуктивная гибель. Повреждение уникальных структур специфика действия ИИ. Генетическое действие ИИ: генные мутации, хромосомные аберрации; их количественные закономерности, связь с репродуктивной гибелью. Интерфазная гибель облученных клеток. Критерии интерфазной гибели; временные и дозовые характеристики. Механизмы апоптоза. Интерфазная гибель как вариант апоптоза.

Тема 7. РАДИОЧУВСТВИТЕЛЬНОСТЬ БИОСИСТЕМ Радиочувствительность биомолекул: белки, нуклеиновые кислоты, фосфолипиды. Радиочувствительность клеток, тканей и органов. Группы критических органов. Самообновляющиеся системы. Костномозговой синдром, желудочно-кишечный и ЦНС-синдром - как функция дозы облучения. Видовая и индивидуальная радиочувствительность.

Тема 8. ВОССТАНОВЛЕНИЕ ОТ ЛУЧЕВОГО ПОВРЕЖДЕНИЯ Процессы восстановления в облученных клетках. Темновая репарация и фотореактивация. Зависимость восстановления от времени и характера облучения, количества поглощенной энергии и скорости ее накопления. Зависимость темпов восстановления в различных системах организма от присущей им скорости физиологических процессов регенерации.

Тема 9. МОДИФИКАЦИЯ ДЕЙСТВИЯ ИИ. Принцип действия радиопротекторов. Понятие о факторе изменения дозы. Основные классы радиопротекторов: серосодержащие и производные индолилалкиламинов. Возможные механизмы действия радиопротекторов: молекулярный, клеточный и организменный уровни. Особенности защиты от нейтронного и внутреннего облучения.

Тема 10. БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ МАЛЫХ ДОЗ ИИ Критерии определения малых доз облучения. Биологические эффекты облучения в малых дозах. Радиационный гормезис. Радиационно-индуцированный адаптивный ответ. Общая неспецифическая реакция организмов на облучение в малых дозах. Количественная оценка биологического действия ИИ в малых дозах. Механизмы действия ИИ в малых дозах на клетки. Роль биомембран в механизме действия малых доз ИИ.

Тема 11. СНОВЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ И РАДИАЦИОННОЙ ГИГИЕНЫ Нормы радиационной безопасности. Нормирование содержания радионуклидов во внешней среде. Основы радиационной безопасности. Правила работы с источниками ИИ. Дозиметрическая и радиометрическая аппаратура.

Тема 12. ВЛИЯНИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ЭКОСИСТЕМЫ Естественный радиационный фон и источники радиоактивного загрязнения внешней среды. Миграция радионуклидов в биосфере. Облучение организмов при попадании радионуклидов внутрь. Модификация внутреннего облучения. Экологические проблемы атомной энергетики.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность зачета 1 час. Критерии оценки:

«Не зачтено» - студент не имеет представления об индуцированных ИИ процессах в живых организмах разного уровня организации, допускает грубые ошибки в ответе и при использовании специальной терминологии; в течение учебного года занимался

посредственно, на семинарских занятиях был пассивен, задания выполнял в основном с оценкой «2» или «3» балла.

«Зачтено» - студент владеет отличными знаниями об индуцированных ИИ процессах в живых организмах разного уровня организации, методах оценки радиационных повреждений и дозиметрии, владеет специальной терминологией, при ответе на вопросы билета и дополнительные вопросы не допускает ошибок, способен к анализу предложенных ситуаций; в течение учебного года студент полностью и успешно выполнил учебный план, активно работал на семинарских занятиях, при выполнении заданий получал в основном оценки «5 баллов».

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=18860
- б) Оценочные материалы текущего контроля и промежуточной аттестации по лисциплине.
- в) План семинарских занятий по дисциплине дан в Электронном курсе https://lms.tsu.ru/course/view.php?id=18860.
- д) Методические указания по организации самостоятельной работы студентов даны в Электронном курсе https://lms.tsu.ru/course/view.php?id=18860.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Ободовский И.М. Основы радиационной и химической безопасности / И. М. Ободовский. Долгопрудный: ИД Интеллект 2013. 300 с.
- 2. Давыдов М.Г. Радиоэкология. Учебник для вузов/М.Г.Давыдов, Бураева Е.А., Зорина Л.В. Ростов на Дону : «Феникс», 2013. 635 с.
- 3. Трошин Е.И. Тесты по радиобиологии [Электронный ресурс] : учеб. пособие /Е. И. Трошин, Ю. Г. Васильев, И. С. Иванов. СПб : Лань , 2014. Электрон. версия печат. публ. Доступ из электрон.-библ. системы "Издательство "Лань". URL: http://e.lanbook.com/books/element.php?pl1_id=49474

б) дополнительная литература:

- 1. Ярмоненко С. П. Радиобиология человека и животных : учеб. пособие / С. П. Ярмоненко, А. А. Вайнсон ; [под ред. С. П. Ярмоненко]. М. : Высшая школа , 2004. 548 с.
- 2. Кудряшов Ю. Б. Радиационная биофизика (ионизирующие излучения): учебник / Ю.Б.Кудряшов М.: Физматлит, 2004. 446 с.
- 3. Коггл Дж. Биологические эффекты радиации /Дж. Коггл; Пер. с англ. И. И. Пелевиной, Г. И. Миловидовой; Под ред. А. Н. Деденкова. М. : Энергоатомиздат , 1986. 184 с.
- 4. Эйдус Л.Х. Физико-химические основы радиобиологических процессов и защиты от излучений: Учебное пособие для биологических специальностей вузов /Л. Х. Эйдус. М.: Атомиздат, 1979. 215 с.
- 5. Радиация и патология : учеб. пособие / А. Ф. Цыб, Р. С. Будагов, И. А. Замулаева и др. ; под общ. ред. А. Ф. Цыба]. М. : Высшая школа , 2005. 340 с.
- 6. Лысенко Н.П. Радиобиология [Электронный ресурс] : учебник / Н. П. Лысенко, В. В. Пак, Л. В. Рогожина, З. Г. Кусурова ; под ред. Н. П. Лысенко, В. В. Пака. Санкт-

Петербург [и др.]: Лань , 2012. — Электрон. версия печат. публ. — Доступ из электрон.-библ. системы "Издательство "Лань". — URL: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=4229

7. Джойнер М.С. Основы клинической радиобиологии [Электронный ресурс] : пер. с англ. / Джойнер М.С., Ван дер Когель О.Дж.. – М.: "БИНОМ. Лаборатория знаний", 2013. – 600 с. – Электрон. версия печат. публ. – Доступ из электрон.-библ. системы "Издательство "Лань". – URL: https://e.lanbook.com/book/8800.

в) ресурсы сети Интернет:

— http://elibrary.ru/contents.asp?titleid=7973 Радиационная биология. Радиоэкология: журнал: Рос. АН. - Москва: Наука, 1993

Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. — Электрон. дан. — М., 2000- . — URL: http://elibrary.ru/defaultx.asp?

- http://e.lanbook.com/ Издательство «Лань»: электрон.-библиотечная система. Электрон. дан. СПб., 2010
- $\underline{\text{http://diss.rsl.ru/}}$ Электронная Библиотека Диссертаций / Российская государственная библиотека. Электрон. дан. М., 2003
- https://openedu.ru/course/mephi/mephi res/ Курс Радиационная биология, платформа Открытое образование

https://wfi.lomasm.ru/files/grob/44069_radiobiologiya_kurs_lektsiy2001_galitskiy.pdf
Радиобиология: курс лекций. Э.А. Галицкий. – Гродно – ГрГУ. 2001. – 204с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Жаркова Любовь Петровна, к.б.н., доцент, кафедра физиологии человека и животных НИ ТГУ.