Appendix 1

Ministry of Science and Higher Education of the Russian Federation NATIONAL RESEARCH TOMSK STATE UNIVERSITY (NR TSU)

Institute of Applied Mathematics and Computer Science

APPROVE Director of the Institute of Applied Mathematics and Computer Science Алики и ма A.V. Zamyatin 6 » 2022

Evaluation materials of the current control and intermediate certification in the discipline (Evaluation tools by discipline) Deep Learning – II

> in the major of training 01.04.02 Applied mathematics and informatics

> > Orientation (profile) of training: **Big Data and Data Science**

> > > Tomsk – 2022

ET was implemented: cand. tech. sciences, Associate Professor of the Department of Theoretical Foundations of Informatics

Am the

S.V. Aksenov

Reviewer: cand. tech. sciences, Associate Professor of the Department of Theoretical Foundations of Informatics

ly

O.V. Marukhina

Evaluation tools were approved at a meeting of the educational and methodological commission of the Institute of Applied Mathematics and Computer Science (EMC IAMCS).

Protocol dated 12.05.2022 № 4

Chairman of the EMC IAMCS, Dr. tech. Sciences, Professor

ISus

S.P. Sushchenko

Evaluation tools (ET) are an element of the system for assessing the formation of competencies among students in general or at a certain stage of its formation.

The ET is developed in accordance with the work program (WP) of the discipline.

1. Competencies and training outcomes, obtained upon the discipline mastery

Competencies	Competence indicator	Code and name of planned training outcomes that characterize the stages of competency formation	Criteria for evaluating training outcomes			
			Excellent	Good	Satisfactory	Unsatisfactory

UK-1. Able to carry out a	IUK-1.1 Identifies a problem	OR-1.1.1	Thoroughly	He is well	Poorly versed in	Does not know the
critical analysis of	situation, on the basis of a	The student will:	understands the	versed in the	the basics of	basics of modern
problem situations based	systematic approach, carries out	- Know the procedures for identifying,	basics of modern	basics of	modern deep	deep learning
on a systematic approach,	its multifactorial analysis and	forming and coordinating requirements	deep learning	modern deep	learning	technologies for
develop an action strategy	diagnostics.	for the results of analytical work using	technologies for	learning	technologies for	analyzing
	IUK-1.2 Carries out the search,	deep learning technologies	analyzing	technologies for	analyzing	heterogeneous data
	selection and systematization of	OR-1.2.1	heterogeneous	analyzing	heterogeneous	(tables, images,
	information to determine	The student will:	data (tables,	heterogeneous	data (tables,	signals, sequences)
	alternative options for strategic	- Know the principles of planning and	images, signals,	data (table,	images, signals,	for building
	solutions in a problem situation.	organizing analytical work using deep	sequences) for	images, signals,	sequences) for	predictive models,
	IUK-1.3 Suggests and justifies	learning technologies	building	sequences) for	building	preparing business
	the strategy of action, taking	OR-1.3.1	predictive models,	building	predictive	intelligence, solving
	into account the limitations,	The student will be able to:	preparing	predictive	models,	data presentation
	risks and possible consequences.	- Prepare data for analytical work on	business	models,	preparing	and processing
		big data research using deep learning	intelligence,	preparing	business	problems. Does not
OPK-3. Able to develop	IOPC-3.3. Develops and	methods	solving data	business	intelligence,	know how to use
mathematical models and	analyzes new mathematical	OP-6.1.1	presentation and	intelligence,	solving data	modern software
analyze them when	models for solving applied	The student will be able to:	processing	solving data	presentation and	tools (programming
solving problems in the	problems of professional	- conduct analytical research and	problems. At a	presentation and	processing	languages, libraries
field of professional	activity in the field of applied	develop applications using deep	high level, he	processing	problems. With	and frameworks) to
activity	mathematics and informatics.	learning technologies in accordance	solves practical	problems. Able	significant	solve practical
	IPK-6.1 Monitors and evaluates	with customer requirements	problems of	to solve	difficulties, he	problems, apply
PC-6. Able to manage the	the performance of big data	OP-6.1.2	designing	practical	solves practical	machine and deep
receipt, storage,	processing	The student will know the methods of	applications that	problems of	problems of	learning
transmission, processing	processing.	data preparation for analytical work on	use deep learning	designing	designing	technologies to
of large	IPK-6.2. Uses methods and tools	the study of big data using deep	using modern	applications	applications that	display
	for receiving, storing,	learning methods	software tools	using deep	use deep	interdependencies
	transmitting, processing big data	OP-6.1.3	(programming	learning with	learning using	in data.
		The student will own	languages,	the help of	modern	
	IPK-6.3. Develops proposals to	methods for conducting analytical	libraries and	modern	software tools	
	improve the performance of big	research and developing applications	frameworks),	software tools	(programming	
	data processing	using deep learning technologies in	using machine	(programming	languages,	
		accordance with customer requirements	and deep learning	languages,	libraries and	
			technologies to	libraries and	frameworks),	
			display	frameworks),	using machine	
			interdependencies	using machine	and deep	
			in data.	and deep	learning	
				learning	technologies to	
				technologies to	display	
				display	ınterdependenci	

2. Stages of competency formation and types of evaluation tools

N	Stages of competency formation	Code and name of training	Type of evaluation tool
JNº	(discipline sections)	outcomes	(tests, assignments, cases, questions,
	Section 1. Fundamentals and architectures	OP-111 OP-121	etc.)
	of deep neural networks. Architectures of	01 1.1.1, 01 1.2.1	
1	deep neural networks. Performing a		Survey in the classroom, preparation for
	laboratory		laboratory work No 1
	work No. 1 (Implementation of deep fully		laboratory work NO.1
	connected neural network models)		
	Section 2: Develop applications that use	OP-1.1.1, OP-1.2.1, OP-1.3.1,	
	deep learning. Design and deploy	OP-6.1.1	
2	applications that use deep neural networks.		Survey in the classroom, preparation for
2	Performing a laboratory		laboratory classes, public defense of
	applications with deep neural network		laboratory work No.2
	models)		
	Section 3. Practical aspects of training deep	OP-611 OP-621 OP-631	
	neural networks. Techniques to Improve the		
2	Design and Training of Deep Neural		Survey in the classroom, preparation for
3	Networks Perform Lab #3 (Tools to		laboratory classes, public defense of
	Improve the Design and Training of Deep		laboratory work No.5
	Neural Networks)		
	Section 4. Practical aspects of sequence	OP-1.1.1, OP-1.2.1, OP-1.3.1,	Survey in the classroom, preparation for
4	modeling. Performing laboratory work No.	OP-6.1.1,OP-6.2.1	laboratory classes, public defense of
	4 (Studying texts with deep neural network		laboratory work No.4
	models)	OD 1 2 1 OD 1 2 1	-
	Section 5. Practical aspects of using deep	OP-1.2.1, OP-1.3.1	
	Convolutional neural networks and		
	autoencoders for solving computer vision		Survey in the classroom, preparation for
5	problems. Completion of laboratory work		laboratory classes, public defense of
	No. 5 (Segmentation and classification of		laboratory work No.5
	objects in images using deep neural		
	networks)		
	Section 6. Practical aspects of using deep	OP-1.2.1, OP-7.1.1, OP-6.2.1	
	neural networks in natural language		
	understanding problems. Using deep neural		Survey in the classroom, preparation for
6	networks in natural language understanding		laboratory classes, public defense of
	problems. Complete Lab #6 (Implementing		laboratory work No.6
	Chatbot Systems with Deep Learning		
	1001s) Section 7. Deep concretive models	OP 1 2 1 OP (11 OP (21)	
	Generative adversarial neural networks	OP-1.2.1, OP-0.1.1, OP-0.2.1, OP 6.3.1	Survey in the classroom, preparation for
7	Complete L ab #7 (Generating Images and	01-0.3.1	laboratory classes, public defense of
	Time Sequences)		laboratory work No.7
	Section 8. Deep Learning Research.	OP-1.2.1. OP-6.1.1. OP-6.2.1.	
	Adaptation of neural network models.	OP-6.3.1	Survey in the classroom, preparation for
8	Reinforcement training. Performing		laboratory classes, public defense of
	laboratory work No. 8 (Research of the		laboratory work No.8
	procedure for retraining neural networks)		
9	Intermediate certification (according to the	OP-1.3.1	Public presentation and protection of the
ĺ	results of laboratory work (min 70%) and		results of an individual project.

the presentation of an individual project - 2-	OP-6.1.1
3 min / person)	

3. Typical control tasks or other materials necessary for the assessment of educational training outcomes

3.1. Typical tasks for conducting ongoing monitoring of progress in the discipline:

Laboratory work №1. "Implementation of Deep Fully Connected Neural Network Models"

The purpose of the work is to write a program in Python and R that builds and trains feed-forward neural networks that solve classification and regression problems (samples received from the teacher), it is required to select a non-redundant network architecture that works with an acceptable error level and visualize the process of model training. The results of the work should be included in the report.

Task description.

Write a Python program that trains a neural network classifier and regressor using the scikit-learn and keras libraries (optionally PyTorch). Take the options below as samples.

Select the features used in training and, if necessary, preprocess them. Divide the sample into training and test. In this work, it is necessary to study the operation of architectures and learning algorithms with different values of the structure and learning parameters (hyperparameters) of networks and choose the best values of the latter.

Write a short report on the work, including the program with comments, the quality values of the models. Choose the best model.

For your version of the regressor, you need to look at the last digit of your grade book (or student ID) number and make the following adjustments:

• if the last digit is 0 or 5: dataset – Forest fires (https://archive.ics.uci.edu/ml/datasets/Forest+Fires), predicted value – fire area (Area);

• if the last digit is 1 or 6: dataset - Wine Quality (https://archive.ics.uci.edu/ml/datasets/Wine+Quality) predicted value - quality (Quality), for a dataset with red wine, winequality-red .csv

• if the last digit is 2 or 7: dataset – Wine Quality (https://archive.ics.uci.edu/ml/datasets/Wine+Quality) predicted value – quality (Quality), for dataset with white wine, winequality-white .csv

• if the last digit is 3 or 8: dataset – Bicycle rental (https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset), predicted value – number of bike rentals per day (Area), day dataset .csv

• if the last digit is 4 or 9: dataset - Bicycle rental (https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset), predicted value - number of bike rentals per hour (Area), hour dataset .csv

Sample for the Covertype Data Set classifier (https://archive.ics.uci.edu/ml/datasets/Covertype).

To do this, you need to look at the last digit of your grade book number (or student ID) and make the following adjustments:

The class label is Cover_Type. Since it is necessary to create binary classifiers and there are 7 possible classes, it is first necessary to change the value of the Cover_Type label.

To do this, you need to look at the last digit of the number of your record book (or student card) and make the following adjustments: if the last digit is 0 or 5: replace label 0 with class A, labels 1, 2, 3, 4 replace with class B;

if the last digit is 1 or 6: replace label 1 with class A, labels 0, 2, 3, 4 replace with class B; if the last digit is 2 or 7: replace label 2 with class A, labels 0, 1, 3, 4 replace with class B; if the last digit is 3 or 8: replace label 3 with class A, labels 0, 1, 2, 4 replace with class B; if the last digit is 4 or 9: replace label 4 with class A, labels 0, 1, 2, 3 replace with class B. tevy models»

Laboratory work №2 "Developing and Deploying Applications with Deep Neural Network Models"

The purpose of the work is to develop a web application in Python using the trained neural network obtained in the previous work, presenting the user with a service for entering the studied data and outputting the result of data classification. The results of the work should be included in the report.

Laboratory work №3 "Tools for increasing the efficiency of designing and training deep neural networks"

The purpose of the work is to explore in Python and R languages methods for tuning parameters and hyperparameters of neural networks using different optimizers, enumeration of architectures for solving problems of multiclass, binary classification, as well as regression for samples provided by the teacher. The results of the work should be included in the report.

Laboratory work No. 4 "Research of texts with deep neural network models"

The purpose of the work is to write a Python program that performs text data classification based on the Keras library using NLTK tools: tokenization and lemmatization, vector text transformation for a sample received from a teacher. The results of the work should be included in the report.

Laboratory work No. 5 "Segmentation and classification of objects in images using deep neural networks"

The purpose of the work is to write a Python program that uses (optionally) either the PyTorch or Keras libraries that perform two tasks: 1) image classification, 2) localization of significant areas in the image, using convolutional neural networks. Samples of images received from the teacher. In the work, you should use the data augmentation procedure and test with the network obtained by transfer learning. The results of the work should be included in the report.

Task description

Write a Python program that trains a binary image classifier based on convolutional neural networks.

To do this, you need to prepare two folders with images belonging to two classes (images can be downloaded from the Internet). Perform data augmentation, for example, by rotating or scaling. Divide the sample into training and test.

Build a set of convolutional neural networks that differ in the number of layers, the alternation of layers, the presence of thinning, and train them on the prepared set of images.

Choose a network that allows you to classify images with sufficient quality, and does not have redundancy.

Write a short report on the work, including the program with comments, model tuning graphs and model metrics values (accuracy, completeness).

Laboratory work №6 "Implementing Chatbot Systems Using Deep Learning Tools"

The purpose of the work is to write a chatbot program in Python that performs the task of human interaction with the bot, using a neural network classifier of statements on one of the topics proposed by the teacher. The results of the work should be included in the report.

Task description

Write a Python program that interacts with the user, answering his questions about some discipline taught at the university.

1. Prepare a set of possible topics for questions on the discipline (at least 9 topics: what is studied, what tools are used, how is the test / exam, etc.)

2. For each topic, ask at least three questions and at least three possible answers.

3. Vectorize questions using any of the Text-To-Vec approaches.

4. Train the question classifier.

5. Build a system of interaction between a chatbot and a person. When asking a question that is close in meaning again, the chatbot will have to indicate that it has already answered this question and answer with a synonymous answer that was not used before.

Write a short conclusion about the most interesting results and errors that occurred during the work.

Laboratory work №7 Image and Time Sequence Generation

The purpose of the work is to write programs in Python that build and train a model for generating time sequences and images (samples of images and time sequences used for tuning were received from the teacher), it is required to select the GAN architectures used to create the result and evaluate its quality, visualize process of training models and lead quality metrics. The results of the work should be included in the report.

Laboratory work No. 8 "Research of the procedure for retraining neural networks"

The purpose of the work is to write a Python program that builds and trains a classifier model (a sample of images was received from a teacher), as well as to conduct experiments on retraining a neural network by adding new training data during the operation of the model. Show on which data sets the model retains the knowledge gained earlier, and on which it begins to lose memory of dependencies. The results of the work should be included in the report.

Topics of individual projects:

To strengthen the studied material, it is planned to carry out an individual project within hours of independent work. The project can be completed both individually and in a mini-group (2-3 people), provided that the amount of work will also be increased. At the end of the semester, a mini-presentation on the results of the work is presented for each project.

The theme of the individual project is related to the theme of the master's degree student. The purpose of the work is the use of deep learning methods in their scientific work.

Topics of surveys in the classroom:

Linked to the material of previous lectures, as well as the personal experience of students. Students can offer options for solving the problem set by the teacher, as well as solution tools. Sample questions: 1. Which of the following neural network models is best suited for predicting time sequences?

a) Single-Layer Perceptron	b) CNN
c) LSTM	d) Multi-layer Perceptron

2. What is the name of several examples from the training set that are used to simultaneously calculate the gradient and weights of the network?

3. Why do models based on convolutional neural networks show the best performance in classifying objects in images compared to other models?

a)They are highly optimized for handling	b)They have a wide range of feature space
vectors with numeric rather than categorical	transformation tools that can be varied by the
features.	developer in the model.
c)They take into account the correlation of adjacent components of the vector	d)They use a significantly larger number of adjustable parameters compared to other models

3.2. Typical tasks for conducting intermediate certification in the discipline.

The student makes a presentation and also demonstrates the program code. Questions on the results can be asked by all students of the group, not only by the teacher.

4. Methodological materials that determine the procedures for evaluating training outcomes

4.1. Methodological materials for assessing the current control of progress in the discipline.

To assess the current performance, a rating system of assessment is used:

Table - Scoring for control elements

Elements of learning activity	Maximum score since the beginning of the semester	Assessed competence
Preparing for labs and defending a lab report	15*4=60	UK-1,OPK-3, PC-6
Protection of individual projects	40	UK-1,OPK-3, PC-6

4.2. Methodological materials for conducting intermediate certification in the discipline.

The mark for the exam is set on the basis of completed laboratory work and the presentation and defense of an individual project. A rating system is used to assess the current progress of students.

Table - Scoring for control elements

Elements of learning activity	Maximum score since the beginning of the semester	Assessed competence
Preparing for labs and	15*4=60	UК-1,OPK-3, PC-6

defending a lab report		
Protection of individual projects	40	UK-1,OPK-3, PC-6
Exam		

Recalculation of scores into intermediate performance assessments

Points on the checkpoint date	Mark
\geq 90% from the maximum points	5 (credited)
from 70% till 89% from the maximum points	4 (credited)
from 60% till 69% from the maximum points	3 (credited)
< 60% from the maximum points	2 (uncredited)