Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Компьютерное моделирование процессов создания материалов по аддитивным технологиям

по направлению подготовки

15.04.03 Прикладная механика

Направленность (профиль) подготовки: Компьютерный инжиниринг конструкций, биомеханических систем и материалов

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП В.А. Скрипняк Е.С. Марченко

Председатель УМК В.А. Скрипняк

Томск - 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-12 Способен создавать алгоритмы цифровой обработки баз данных результатов испытаний и эксплуатации сложных деталей и узлов в машиностроении, разрабатывать современные цифровые программы расчетов и проектирования деталей, узлов, конструкций, машин и материалов с учетом требований надежности, долговечности и безопасности их эксплуатации.

ПК-1 Способен критически анализировать современные проблемы прикладной механики с учетом потребностей промышленности, современных достижений науки и мировых тенденций развития техники и технологий, ставить задачи и разрабатывать программу исследования, выбирать адекватные способы и методы решения теоретических, прикладных и экспериментальных задач, анализировать, интерпретировать, представлять и применять полученные результаты.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 12.1 Знать способы построения алгоритмов цифровой обработки баз данных результатов испытаний и эксплуатации сложных деталей и узлов в машиностроении, разработки современных цифровых программ расчетов и проектирования деталей, узлов, конструкций, машин и материалов с учетом требований надежности, долговечности и безопасности их эксплуатации;

ИОПК 12.2 Уметь создавать алгоритмы цифровой обработки баз данных результатов испытаний и эксплуатации сложных деталей и узлов в машиностроении, разрабатывать современные цифровые программы расчетов и проектирования деталей, узлов, конструкций, машин и материалов с учетом требований надежности, долговечности и безопасности их эксплуатации;

ИПК 1.1 Знать перспективные направления и последние достижения современной науки и техники в области производства объемных материалов, соединений, композитов на их основе и изделий из них:

ИПК 1.2 Знать современные проблемы прикладной механики, методы планирования научно-исследовательской работы, способы решения научных задач механики, обработки и анализа полученных данных, представления результатов;

ИПК 1.3 Уметь осуществлять сбор, анализ и систематизацию информации по проблеме исследования с учетом потребностей промышленности, современных достижений науки и мировых тенденций развития техники и технологий;

ИПК 1.4 Уметь ставить задачи и разрабатывать программу исследования, выбирать адекватные способы и методы решения теоретических, прикладных и экспериментальных задач.

2. Задачи освоения дисциплины

- получение знаний о методах и способах создания быстрых прототипов с использованием технологий 3D-печати и систем автоматизированного производства (САПР);
- получение знаний о технологиях 3D-печати методами лазерной стереолитографии (SLA Stereolithography Laser Additive) и моделирования методом послойного наплавления (FDM Fused Deposition Modeling);
- формирование умений организации процесса 3D-моделирования в системах автоматизированного проектирования производственных процессов;
- формирование умений ставить задачи и применять методы решения теоретических, прикладных и экспериментальных задач на основе аддитивных технологий быстрого прототипирования;

- формирование умений применения аддитивных технологий быстрого прототипирования при решении конструкторско-технологических задач;
- получение навыков решения практических задач профессиональной деятельности с применением аддитивных технологий.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, является обязательной для изучения.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Второй семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: конструкционная прочность и ее физические основы.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-лекции: 16 ч.

-практические занятия: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Лекции.

Тема 1. Классификация методов аддитивных технологий.

Аддитивные технологии и принципы создания изделий по данным цифровой послойного добавления. (CAD-модели) методом Типы технологических процессов и семь категорий 3D аддитивных технологий в соответствии с принятыми стандартами ASTM: FDM - Fused Deposition Modeling - моделирование методом послойного наплавления/FFF – Fused Filament Fabrication – производство способом наплавления нитей/MJS - Multiphase Jet Solidification - многофазное отверждение струи; MJ – Material Jetting – разбрызгивание материала; BJ – Binder Jetting – разбрызгивание связующего; SL - Sheet Lamination - соединение листовых материалов; VP - Vat Photopolymerization- фотополимеризация в ванне; PBF - Powder Bed Fusion расплавление материала в слое или последовательное формирование расплавленных слоев порошковых материалов; DED – Directed energy deposition – подведение энергии в место плавления материала.

Тема 2. Технология лазерной стереолитографии (Stereolithography) SLA.

Основы и особенности технологии лазерной стереолитографии SLA (Stereolithography). Используемые материалы и требования к ним. Преимущества и недостатки технологии SLA. Применение в медицине и технике.

Tema 3. Технология моделирования методом послойного наплавления FDM (Fused Deposition Modeling).

Физические основы технологий трехмерного моделирования и трехмерной печати. Виды 3D-моделирования. Среды создания трехмерных моделей. Основы и особенности технологии FDM (Fused Deposition Modeling). Используемые материалы и требования к ним. Преимущества и недостатки технологии FDM. Применение в медицине и в технике.

Тема 4. Технология селективного лазерного плавления SLM (Selective Laser Melting). Технология селективного лазерного синтеза SLS (Selective Laser Sintering).

Основы и особенности технологии SLM. Используемые материалы и требования к ним. Преимущества и недостатки технологии SLM. Основы и особенности технологии SLS. Используемые материалы и требования к ним. Преимущества и недостатки технологии SLS. Применение в медицине и технике.

Тема 5. Программное обеспечение для 3D моделирования материалов.

Особенности 3D моделирования материалов. Создание цифровой модели изделия. Экспорт 3D модели в формат STL. Инженерный анализ (CAE) 3D модели изделия, подготовленной для синтезирования с помощью аддитивных технологий. Модификация 3D модели и STL модели с учетом результатов CAE анализа.

Тема 6. Программное обеспечение для подготовки моделей для 3D печати. Программное обеспечение для подготовки моделей, понятие слайсер. Генерация G-кода. Настройки параметров печати. Создание изделия путём послойного синтеза материала. Финишная обработка объекта. Полировка, шлифовка объекта.

План практических занятий.

Занятия по темам 1-4. Определение марок расходных материалов для производства изделий методами SLA, FDM, SLM, SLS. Определение требуемых параметров режимов и физико-механических свойств материалов для 3D печати.

Занятия по теме 5. Разработка обеспечивающей требуемые механические характеристики деформируемости и прочности цифровой модели детали для 3D печати из пластика акрилонитрил-бутадиен-стирола (ABS).

Занятие по теме 6. Генерация G-кода, настройка параметров печати. Практическая 3D печать модельного изделия. Финишная обработка напечатанного изделия.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестирования по лекционному материалу, контроля за выполнением индивидуальных заданий. Результаты текущего контроля фиксируются в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет во втором семестре проводится в устной форме по экзаменационным билетам. Экзаменационный билет состоит из двух частей (теоретической и практической). Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=37581
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План практических занятий по дисциплине.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Канищев, Максим Викторович. К19 Введение в аддитивные технологии. Т. 1. Обзор основных технологий 3D-печати: учебник / М.В. Канищев, Л.М. Ульев. Москва: Издательский Дом НИТУ «МИСиС», 2023. 352 с.
- 2. Валетов В. А. Аддитивные технологии (состояние и перспективы). Учебное пособие. СПб.: Университет ИТМО, 2015. 63с.
- 3. Григорьянц А. Г. Лазерные аддитивные технологии в машиностроении: учебное пособие / А. Г. Григорьянц, И. Н. Шиганов, А. И. Мисюров, Р. С. Третьяков; под ред. А. Г. Григорьянца. Москва: МГТУ им. Баумана, 2018. 280 с. ISBN 978-5-7038-4976-7.
- 4. Сотов А. В. Моделирование процессов аддитивного производства с применением МКЭ: методические указания / А. В. Сотов, А. В. Агаповичев, В. Г. Смелов. Самара: Изд-во Самар. ун-та, 2017. 42 с.
- 5. Шкуро, А.Е. Технологии и материалы 3D-печати [Электронный ресурс]: учеб. пособие / А.Е. Шкуро, П.С. Кривоногов. Екатеринбург: Урал. гос. лесотехн. ун-т, 2017. 1 электрон. опт. диск (CD-ROM). Мин. системные требования: IBM IntelCeleron 1,3 ГГц; Microsoft Windows XP SP3; Видеосистема Intel HD Graphics; дисковод, мышь. Загл. с экрана.
 - б) дополнительная литература:

Кулик, В.И. Аддитивные технологии в производстве изделий авиационной и ракетно-космической техники: учебное пособие / В.И. Кулик, А.С. Нилов; Балт. гос. техн. ун-т. – СПб., 2018. - 160 с.

Мидуков, Н. П. Инженерная и компьютерная графика. Технологии 3D-печати, сканирования и моделирования деталей сложной формы: учебное пособие / Н. П. Мидуков, М. А. Литвинов. — СПб.: ВШТЭ СПбГУПТД, 2022. — 80 с.

– Аддитивные технологии: перспективы 3D печати в промышленности. URL: https://up-pro.ru/library/innovations/niokr/additive-3d/ (Дата обращения 08.03.2025 г.).

Ланин В.Л. Аддитивные технологии инновационного производства. Лабораторный практикум. Пособие. В.Л. Ланин, И.В. Самуйлов. –Минск: БГУИЗ. 2021.- 76 с.

в) ресурсы сети Интернет:

Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);

Компас 3D, WB ANSYS 2021

- публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
- б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
- Трофимов, А. В. Компьютерные технологии в машиностроении. Аддитивные технологии: учебное пособие / А. В. Трофимов. Санкт-Петербург: СПбГЛТУ, 2019. 72 с. ISBN 978-5-9239-1114-5. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/120060 (дата обращения: 14.05.2024). Режим доступа: для авториз. пользователей.
- Горунов, А. И. Основы аддитивного производства: учебно-методическое пособие / А. И. Горунов, А. Р. Гайсина, А. Х. Гильмутдинов. Казань: КНИТУ-КАИ, 2019. 16 с. ISBN 978-5-7570-2361 -1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/144009 (дата обращения: 14.05.2024). Режим доступа: для авториз. пользователей.
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - ЭБС Стандартов https://kodeks.ru/
 - Постобработка напечатанных изделий: https://3dtoday.ru/wiki/processing_models
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных (при наличии):
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатории, оборудованные рабочими местами с компьютером, с установленным программным обеспечением для 3D моделирования, ПО sliser (Creality Print и др.), 3D принтером.

15. Информация о разработчиках

Скрипняк Владимир Владимирович, канд. физ.-мат. наук, кафедра механики деформируемого твердого тела ФТФ, доцент