Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Рабочая программа дисциплины

Электродинамика СВЧ

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки / специализация: **Радиоэлектронные системы передачи информации**

Форма обучения **Очная**

Квалификация **Инженер**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и применять соответствующий физикоматематический аппарат для их формализации, анализа и принятия решения.
- ПК-3 Способен формулировать математические модели процес-сов и явлений, происходящих в радиоэлектронных системах и на их основе проводить компьютерное моделирование и оптимизацию.
- ПК-4 Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.1 Имеет представление об историческом и современном состоянии области профессиональной деятельности
- ИОПК 2.2 Выделяет научную сущность и проблемные места в решаемых задачах профессиональной деятельности
- ИОПК 2.3 Владеет приемами и методами решения проблемных задач профессиональной деятельности
- ИПК 3.1 Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах
- ИПК 3.2 Разрабатывает математические модели исследуемых физических процессов, приборов, схем и электронных систем
- ИПК 4.1 Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации
- ИПК 4.2 Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров
- ИПК 4.3 Применяет стандартные прикладные программные средства при проведении модельных экспериментов

2. Задачи освоения дисциплины

- Освоить математический аппарат прикладной электродинамики и научиться применять его для описания полей в волноводах прямоугольного и круглого сечения .
- Изучить принципы построения устройств элементной базы СВЧ диапазона и особенности их практического применения.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули)».

Дисциплина относится к вариативной части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Шестой семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам:

- «Электродинамика», «Методы математической физики», «Радиоэлектроника», «Теория колебаний».

....

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 6 з.е., 216 часов, из которых:

-лекции: 30 ч.

-семинар: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение.. Место диапазона СВЧ в спектре ЭМК Особенности диапазона СВЧ

Спектр электромагнитных волн. Диапазоны частот Актуальность освоения диапазона СВЧ. Прекращение действия низкочастотной элементной базы. Критические волны.

Тема 2. Линия передачи СВЧ. КСВН, КБВН

Особенности распространения волн в длинных линиях. Падающая и отраженная волны. Стоячая волна в волноводе. Понятия КСВН, КБВН, их связь с коэффициентом отражения нагрузки.

Тема 3. Уравнения Максвелла для металлических волноводов.

Преобразование уравнений Максвелла. Обобщенное выражение для бегущей волны.

Конкретизация системы координат. Типы волн в металлических волноводах

Тема 4. Волноводы прямоугольного сечения. Е и Н типы волн в прямоугольных волноводах

Граничные условия в волноводе прямоугольного сечения. Применение граничных условий для нахождения неизвестных коэффициентов и получения выражений для распределений полей для Е и Н типов волн в волноводе.

Тема 5 Длина волны в волноводе. Дисперсия. Спектр видов колебаний в прямоугольном волноводе.

Постоянная распространения и длина волны в прямоугольном волноводе. Критические длины волн. Спектр типов колебаний, распространяющихся в волноводе. Скорость распространения волны. Дисперсия

Тема 6 Фазовая и групповая скорость волн в прямоугольном волноводе. Токи в стенках волновода.

Мощность передаваемая по волноводу. Понятия фазовой и групповой скорости. Физический смысл сверхсветовой фазовой скорости. Соотношения для токов различных типов волн. Мощность волны в волноводе, максимальная напряженность поля. Пробой.

Тема 7. Волноводы круглого сечения. Е и Н типы волн в круглом волноводе

Преобразование уравнений Максвелла в цилиндрической системе координат. Выражения для Е и Н полей в волноводах круглого сечения. Граничные условия для круглого волновода. Е и Н типы волн в волноводе круглого сечения.

Тема 8 Коаксиальные волноводы. Основной и высшие типы волн в коаксиальном волноводе. Полосковый волновод

Понятие «коаксиальный волновод». ТЕМ -волна в коаксиальном волноводе. Неосновной тип волны и расчет его критической длины волны. Полосковые волноводы и их различные конфигурации.

Тема 9. Направленный ответвитель. Аттенюатор. Фазовращатель. Назначение и принцип действия направленного ответвителя. Назначение и устройство аттенюатора. Виды аттенюаторов. Децибелльная шкала затуханий. Назначение и принцип действия фазовращателя.

Тема 10. Делители мощности Е и Н Т-мосты, двойной Т-мост. Гибридное кольцо Волноводные Т-мосты Е- и Н – типа, их особенности. Двойной Т-мост и его применения. Принцип действия и применения волноводного гибридного кольца.

Тема 11. Замедляющие структуры. Диэлектрический волновод. Спираль. Гребенчатая структура

Замедление волны в диэлектрике. Замедление волны в спиральном проводнике. Коэффициент замедления.

Гребенчатая замедляющая структура.

Тема 12. Невзаимные элементы СВЧ (Y -циркулятор, вентиль) Назначение невзаимных элементов СВЧ-тракта. Устройство и принцип действия вентиля. Устройство и принцип действия гибридного кольца. Примеры применений невзаимных элементов.

Тема 13. Объемный резонатор. Типы колебаний, распределения полей. Колебательный контур в СВЧ-диапазоне. СВЧ-резонатор как короткозамкнутый отрезок линии перелачи. Выражения для резонансных частот резонаторов прямоугольного и круглого сечений..

Тема 14. Спектр резонансных частот. Добротность. Коэффициенты связи. Резонансные частоты основных и высших типов колебаний резонаторов. Понятие добротности. Частичные добротности, связанные с различными видами потерь в резонаторе. Понятие коэффициента связи.

Tема 15 СВЧ устройства в измерительной, диагностической, медицинской технике.

Применения волноводных и резонаторных устройств в системах связи, локации, измерительной технике. СВЧ – устройства физиотерапии и гипертермии. Заключение.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу,, выполнения заданий для самостоятельной работы, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Перечень контрольных вопросов для самостоятельной работы.

- 1. Описание волноводных элементов в системе программирования CST
- 2. Типы волн и потери в линиях передачи. КСВН, КБВН.
- 3. Прямоугольный волновод. .Е и Н типы волн в прямоугольном волноводе.
- 4. Фазовая и групповая скорость волн в волноводе;
- 5. Волноводы круглого сечения. Коаксиальный волновод.
- 6. Ответвители, тройники, гибридное кольцо.
- 7. Аттенюаторы.
- 8. Фазовращатели.
- 9. Полосковые системы.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в шестом семестре проводится в письменной форме по билетам.

Экзаменационный билет включает три вопроса. Продолжительность экзамена 1,5 часа.

Структура экзамена соответстввует компетентностной структуре дисциплины:

- -первый вопрос касается общетеоретической части курса
- -второй вопрос посвящен описанию и принципам работы одного из устройств элементной базы СВЧ-диапазона частот
 - -третий вопрос касается применений устройств СВЧ
 - 1. Примерный перечень теоретических вопросов:
 - 1.1. Уравнения Максвелла в прямоугольной системе координат и граничные условия для волновода прямоугольного сечения
 - 1.2. Уравнения Максвелла в цилиндрической системе координат и граничные условия для волновода круглого сечения
 - 1.3. Падающая и отраженная волны в линии передачи. Стоячая волна Их взаимосвязь
 - 1.4. Коэффициент стоячей волны, Коэффициент бегущей волны. Их связь с параметрами линии передачи и нагрузки
 - 1.5. Типы волн в волноведущих ситемах.
 - 1.6. Волны Е-типа в прямоугольном волноводе
 - 17. Волны Н-типа в прямоугольном волноводе
 - 1.8 Волны Е-типа в волноводе круглого сечения
 - 1.9. Волны Н –типа в волноводе круглого сечения
 - 1.10. Фазовая и групповая скорость волны в волноводе
 - 1.11 Токи в стенках металлических волноводов
 - 1.12. Мощность, передаваемая по волноводу, максимальная напряженность поля. Пробой.
- 2. Примерный перечень вопросов, посвященных описанию принципов работы СВЧ устройств
 - 2.1.. Колебательные системы СВЧ (резонаторы)
 - 2.2 СВЧ-резонатор как короткозамкнутый отрезок волноводной линии передачи
 - 2.3 Спектр резонансных частот резонатора. Добротность
 - 2.4 Коаксиальная линия. Основной и высшие типы волн в коаксиальной линии.
 - 2.5 Направленный ответвитель, устройство и принцип действия.
 - 2.6 Аттенюаторы. Назначение, устройство, принцип действия.
 - 2.7 Фазовращатель Назначение, устройство, принцип действия
 - 2.8 Делители мощности. Т-мост. Устройство, принцип действия.

- 2.9 Двойной Т-мост. Устройство, принцип действия.
- 2.10. Гибридное кольцо. Устройство, принцип действия
- 2.11.Замедляющие системы СВЧ (диэлектрик, спираль, гребенчатая структура)
- 2.12. Невзаимные элементы СВЧ-тракта (вентиль, Y-циркулятор)
- 3. Примерный перечень вопросов по практическим применениям СВЧ устройств.
 - 3.1..Как рассчитывается размер волновода для заданной частоты колебаний ЭМ поля?
 - 3.2. Как расположены излучающие и неизлучающие щели в стенках волновода?
 - 3.3. Как осуществляется пересчет затухания аттенюатора, заданное в децибеллах, в отношение падающей и прошедшей мощностей.
 - 3.4 .Как с помощью двойного Т-моста осуществить схему сравнения .объекта с эталоном?
 - 3.5 Измерительная линия. Область применений и устройство.
 - 3.6. Панорамный измеритель КСВН принцип действия и применения в измерительной технике.
 - 3.7. Применения гибридного кольца в схемах измерений и неразрушающего контроля.
 - 3.8 Применения СВЧ-резонатора. Собственная и нагруженная добротность.
 - 3.9. Как рассчитывается собственная добротность резонатора при известной измеренной (нагруженной) и значениям коэффициентов связи?
 - 3.10 Применение явления пробоя в СВЧ волноводе для предохранения приемной системы локатора.
 - 3.11 Применения СВЧ –колебаний в системах связи, локации, неразрушающем контроле.
 - 3.12. Применения СВЧ-колебаний в радиоспектроскопии, биологии и медицине

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Результаты текущего контроля также оцениваются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» и учитываются в итоговой оценке следующим образом:

		Результат			
		текущего контроля			
		5	4	3	2
	5	5	5	4	3
Результат экзамена	4	4	4	4	3
	3	4	3	3	3
	2	3	2	2	2

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=00000
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Электродинамика и распространение радиоволн: учебник/ И.П.Соловьянова, Ю.Е. Мительман, С.Н.Шабунин; под общ. Ред. Мительман, С. Н. Шабунин; под общ. ред. доц., канд. техн. наук И. П. Соловьяновой и доц., канд. техн. наук Ю. Е. Мительмана; Мин-во науки и высш. образования РФ. Екатеринбург: Изд-во Урал. ун-та, 2020 412 с.

https://elar.urfu.ru/bitstream/10995/94001/1/978-5-7996-3137-6_2020.pdf

- 2. Фальковский О.И. Техническая электродинамика. СПб: Изд-во Лань, 2016. 429 с.
- 3. Электродинамика и распространение радиоволн: учебное пособие / Муромцев Д.Ю., Зырянов Ю.Т., Федюнин П.А. и др. СПб.: Лань, 2014, 448 с.
- 4. Электродинамика : учебное пособие : [для студентов физических факультетов вузов] . Москва : ИНФРА-М , 2014. -157 с.
 - б) дополнительная литература:
- 1. Г.Д.Богомолов. Прикладная электродинамика . 2014 <u>https://kapitza.ras.ru/chair/books/bogom.pdf</u>
- 2.. Баскаков С.И. Электродинамика и распространение радиоволн. М.: Лань, 2009. 432 с.
- 3..Неганов В.А., Осипов О.В., Раевский С.Б., Яровой Г.П. Электродинамика и распространение радиоволн. М.: Радио и связь, 2005. 648 с.
- 4..Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988. 440 с.
- 5..Завьялов А.С. Электродинамика сверхвысоких частот: учебное пособие. Том. гос. ун-т. Томск: [б. и.], 2007. 129 с
- 6. Григорьев А.Д. Электродинамика и техника СВЧ. М.: Высшая школа, 1990.- 334 с.
 - в) ресурсы сети Интернет:
- открытые онлайн-курсы
- -электронный учебный курс на базе виртуальной обучающей среды MOODLE (сайт http://rff-moodle.tsu.ru);
- научно-образовательные ресурсы сети Интернет.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:

 Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);

 публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system

- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- ЭБС ZNANIUM.com https://znanium.com/
- 96C IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Дунаевский Григорий Ефимович, доктор технических наук, профессор, заведующий кафедрой радиоэлектроники