Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Рабочая программа дисциплины

Экспериментальная внутренняя баллистика

по направлению подготовки

24.03.03 Баллистика и гидроаэродинамика

Направленность (профиль) подготовки: **Баллистика и гидроаэродинамика**

Форма обучения **Очная**

Квалификация **инженер-исследователь**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП Е.И. Борзенко К.С. Рогаев

Председатель УМК В.А. Скрипняк

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен использовать в профессиональной деятельности основные законы естественнонаучных и общеинженерных дисциплин, применять методы математического моделирования, теоретических и экспериментальных исследований
- ОПК-5 Способен учитывать современные тенденции развития техники и технологий в своей профессиональной деятельности
- ОПК-6 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных, аргументировано защищать результаты выполненной работы
- ПК-1 Способен проводить сбор, обработку, анализ и обобщение результатов экспериментов и исследований в соответствующей области знаний

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК-1.1 Знает фундаментальные законы природы и основные физические и математические законы
- РООПК-1.2 Умеет применять физические законы и математические методы для решения задач теоретического и прикладного характера
- РООПК-5.1 Знает методику учета современных тенденций развития техники и технологий в своей профессиональной деятельности
- РООПК-5.2 Умеет учитывать современные тенденции развития техники и технологий в своей профессиональной деятельности
- РООПК-6.1 Знает основные методы и средства проведения экспериментальных исследований, способы обработки и представления данных, системы стандартизации и сертификации
- РООПК-6.2 Умеет выбирать способы и средства измерений и проводить экспериментальные исследования
- РОПК-1.1 Знает методы проведения экспериментов и наблюдений, обобщения и обработки информации.
 - РОПК-1.2 Умеет применять методы анализа научно технической информации.

2. Задачи освоения дисциплины

- Изучить основы теории горения порохов, закономерности процесса газообразования, постановку основной задачи внутренней баллистики.
- Научиться проводить обработку результатов манометрических исследований, рассчитывать скорость горения пороха в замкнутом объеме.
- Изучить основные процессы и периоды выстрела, аналитические и численные методы е решения основной задачи, зависимости основных характеристик выстрела от параметров заряда и снаряда
- Научиться получать аналитическое и численное решение основной задачи внутренней баллистики, проводить анализ зависимостей баллистических параметров выстрела от условий заряжания.
- Изучить основные физические закономерности, составляющие основу для методов измерения давления в установках и скорости перемещения механизмов и узлов устройства; принципы работы усилительной и регистрирующей аппаратуры и построения измерительных трактов.
- Научиться делать оценки погрешностей тех или иных методов измерений; получать выражения, связывающие регистрируемые величины с параметрами процессов в мехатронных и робототехнических устройствах.

— Изучить приемы работы с исследуемыми объектами в соответствии с нормами и требованиями техники безопасности; методики тарирования датчиков и измерительных трактов; приемы обработки данных испытаний.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)». Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Шестой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Обучающийся должен знать:

- основы термодинамики;
- основы теоретической механики;
- основы математического анализа и линейной алгебры;
- основы численных методов вычислений.

Обучающийся должен уметь:

- решать обыкновенные дифференциальные уравнения
- проводить численное интегрирование обыкновенных дифференциальных уравнений.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых:

- -лекции: 12 ч.
- -лабораторные: 10 ч.
- -практические занятия: 6 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Предмет и содержание Экспериментальной баллистики

Значение экспериментальных исследований в баллистике. Предмет экспериментальной баллистики. Содержание экспериментальной баллистики. Сведения из истории развития баллистики.

Тема 2. Расчет максимального давления в манометрической бомбе

Расчет максимального давления в манометрической бомбе и функции газообразования. Связь между условиями заряжания и давлением в замкнутом объеме. Закон газообразования и геометрические формы пороха.

Тема 3. Методы измерения давления пороховых газов

Общие сведения. Значение измерения давления в баллистике. Основные методы измерения давления. Элементы приборов для измерения давления. Понятие о тарировании индикаторов.

Тема 4. Метод пластических деформаций

Сущность метода. Крешеры и крешерные приборы. Понятие о теории действия крешерного прибора. Тарирование крешеров. Прессы для тарирования крешеров. Методика применения крешеров для измерения давления.

Тема 5. Метод упругих деформаций

Сущность метода упругих деформаций. Понятие о теории метода упругих деформаций. Саморегистрирующий упругий манометр. Результаты применения упругих манометров.

Тема 6. Пьезоэлектрический метод

Физические основы пьезоэлектрического метода. Принцип измерения давлений пьезоэлектрическим методом. Виды пьезоманометров. Устройство электронного усилитель в пьезоэлектрическом методе. Тарирование пьезоманометров. Практика использования пьезоэлектрического метода. Электрическое дифференцирование и интегрирование опытной кривой давления.

Тема 7. Тензометрический метод

ущность метода

омических Типы датчиков. Физические свойства омических датчиков. Тензометрический Конструкции тензоманометров. Электрическая метод. схема тензоиндикатора. Тарирование тензоиндикатора. Практика использования тензометрического метода.

Тема 8. Индуктивный и емкостный метод

Принцип действия электромеханических ферромагнитных датчиков и преобразователей, классификация. Принцип действия электромеханических емкостных датчиков и преобразователей, классификация.

Тема 9. Измерительно-регистрирующие комплексы

Применение ЭВМ для автоматизации измерений динамических давлений. Применения цифровых методов и средств для измерения динамических давлений. Аналого-цифровые преобразователи. Системы цифровой регистрации динамических давлений. Состав и структура автоматизированной системы измерения динамического давления.

10. Методы и аппаратура измерения скорости метаемых элементов

Общие сведения. Значение измерения скорости метаемых элементов в баллистике. Основные методы измерения скорости метаемых элементов.

Тема 11. Методы определения мгновенной скорости

Метод баллистического маятника. Метод использования баллистической волны.

Тема 12. Методы определения средней скорости

Блокирующие устройства. Начальная скорость. Внешние блокирующие устройства. Внешние блокирующие устройства. Ствольные блокирующие устройства. Надульные датчики скорости.

Тема 13. Методы определения скорости как функции пути и времени Метод на основе эффекта Доплера. Системы на базе телеметрических станций.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, лабораторных работ и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет проводится в письменной форме по билетам. Билет содержит два теоретических вопроса. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=22364
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
 - в) План практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Н.П. Медведева «Экспериментальная баллистика» изд. ТГУ, 2007.
- 2. П.И. Шкворников, Н.М. Платонов «Экспериментальная баллистика. Приборы и методы баллистических измерений» М.,Оборонгиз.,1953г.
- 3. «Электрические измерения. Средства и методы измерений.» Под ред. Е.Г. Шримкова. М., Высшая школа, 1972г.
- 4. А.М. Туричин «Электрические измерения не электрических величин.» Л., Госэнергоиздат., 1959г.
 - 5. А.М. Туричин «Электрические измерения» Л., Госэнергоиздат., 1961 г.
- 6. «Электрические измерения». Под ред. А.В. Фремке. Л., Госэнергоиздат, 1963 г.
- 7. Сборник лабораторных работ по внутренней баллистике. Под ред. Ю.И. Медведева, Томск, изд. ТГУ, 1981 г.
 - б) дополнительная литература:
 - 1. Кунце Х.-И. Методы физических измерений: пер. с нем. М.: Мир, 1989
 - 2. Шенк X. Теория инженерного эксперимента. М.: «Наука», 1972
 - в) ресурсы сети Интернет:
- Общероссийская Сеть КонсультантПлюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);

- публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий)
 http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий практического типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лабораторные помещения с установками: две манометрические бомбы, измерительный комплекс с цифровой регистрацией давления, грузопоршневой манометр для тарирования тензодатчиков, пресс Барановского для тарирования медного и упругого крешеров, пресс прямого нагружения для тарирования пьезодатчиков, установка для динамического тарирования пьезодатчиков, баллистическая трасса для измерения внешних баллистических параметров метаемого тела.

15. Информация о разработчиках

Рогаев Константин Сергеевич, кандидат физико-математических наук, Физико-технический факультет НИ ТГУ, доцент