Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДАЮ: Декан

А. Г. Коротаев

Рабочая программа дисциплины

Электродинамика СВЧ

по направлению подготовки / специальности

11.05.01 Радиоэлектронные системы и комплексы

Направленность (профиль) подготовки / специализация: Радиоэлектронные системы передачи информации

Форма обучения **Очная**

Квалификация **Инженер**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.А. Мещеряков

Председатель УМК А.П. Коханенко

Томск - 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и применять соответствующий физикоматематический аппарат для их формализации, анализа и принятия решения.
- ПК-3 Способен формулировать математические модели процес-сов и явлений, происходящих в радиоэлектронных системах и на их основе проводить компьютерное моделирование и оптимизацию.
- ПК-4 Способен выполнять исследования с целью совершенствования и роста технических характеристик радиоэлектронной аппаратуры с использованием стандартных пакетов прикладных программ.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.1 Имеет представление об историческом и современном состоянии области профессиональной деятельности
- ИОПК 2.2 Выделяет научную сущность и проблемные места в решаемых задачах профессиональной деятельности
- ИОПК 2.3 Владеет приемами и методами решения проблемных задач профессиональной деятельности
- ИПК 3.1 Использует фундаментальные знания о физической природе и физических явлениях происходящих элементах и объектах радиоэлектронных систем и комплексах
- ИПК 3.2 Разрабатывает математические модели исследуемых физических процессов, приборов, схем и электронных систем
- ИПК 4.1 Применяет прикладные методы моделирования процессов в радиоэлектронных системах передачи информации
- ИПК 4.2 Владеет приемами компьютерного моделирования радиоэлектронных систем и комплексов передачи информации с целью предсказания и улучшения их параметров
- ИПК 4.3 Применяет стандартные прикладные программные средства при проведении модельных экспериментов

2. Задачи освоения дисциплины

- изучить особенности диапазона СВЧ, линий передачи, колебательных систем и элементов СВЧ-тракта
- научиться применять математический аппарат электродинамики для решения практических задач профессиональной деятельности
- научится применять теоретические знания об элементах и устройствах СВЧ в рамках профессиональной деятельности

3. Место дисциплины в структуре образовательной программы

Дисциплина «Электродинамика СВЧ» (код Б1.В.ДВ.02.02) относится к дисциплинам по выбору студента вариативной части ООП, формируемой участниками образовательных отношений Блока Б1.О.В. «Дисциплины (модули)» в рамках модуля по выбору Б1.В.ДВ.02 «Дисциплины по выбору».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Пятый семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины необходимо знать основы высшей математики, линейной алгебры и электродинамики.

Пререквизиты дисциплины

Необходимо наличие у студента компетенций, сформированных при освоении дисциплин: - Б1.У.О.02 «Математический анализ», Б1У.О.06 «Линейная алгебра», Б1. У.О.08 «Дифференциальные уравнения», Б1.О.О.01 «Радиоэлектроника», Б1.О.О.05 «Электродинамика»,

Постреквизиты дисциплин

Б1.П.О..06 «Методы моделирования устройств СВЧ», Б1.П.В..02 «Измерения на СВЧ»,

2. Компетенции и результаты обучения, формируемые в результате освоения дисциплины

Таблица 1

Компетенция ОПК-2	Индикатор компетенции ИОПК 2.1	Код и наименование результатов обучения (планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций) ОР 1.2.1.
	Выбирает и использует соответствующие ресурсы, современные методики и оборудование для проведения экспериментальных и теоретических исследований.	Обучающийся умеет использовать соответствующие ресурсы, современные методики и оборудование для проведения экспериментальных и теоретических исследований, в частности, умеет использовать оборудование и элементную базу СВЧ- диапазона радиоволнового спектра.
OFFIC 2	ИОПК 2.2	ОР 1.2.2.
ОПК-2	Обрабатывает для получения обоснованных	Обучающийся умеет самостоятельно осуществлять обработку результатов экспериментальных и теоретических исследований для получения обоснованных

¹ Результаты обучения могут быть сформулированы в виде конкретных результатов обучения или дескрипторов: знать; уметь; владеть.

ПК-2	выводов и представляет полученные результаты экспериментальных и теоретических исследований.	выводов и представлять полученные результаты ОР 2.2.1
	Понимает принцип действия и модели разрабатываемого радиоэлектронного прибора или устройства.	Обучающийся знает принципы действия и модели разрабатываемого радиоэлектронных приборов или устройств СВЧ –диапазона
ПК-2	ИПК 2.2 Применяет в профессиональной деятельности различные численные методы, в том числе реализованные в готовых библиотеках при решении конкретных радиофизических задач.	ОР 2.2.2. Обучающийся умеет применять в профессиональной деятельности различные численные методы, в том числе реализованные в готовых библиотеках при решении конкретных радиофизических задач.
ПК-2	ИПК 2.3 Владеет современными пакетами программ при решении задач в области радиофизики и радиоэлектроники.	ОР 2.2.3. Обучающийся владеет современными пакетами программ при решении задач в области радиофизики и радиоэлектроники

3. Структура и содержание дисциплины

3.1. Структура и трудоемкость видов учебной работы по дисциплине

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из которых 34 часа составляет контактная работа обучающегося с преподавателем (34 часа – лекции, 108,05 часов составляет самостоятельная работа обучающегося).

Вид учебной работы	Трудоемкость в академических			
	часах			
Общая трудоемкость	5 семестр	всего		
Контактная работа:	34	34		
Лекции (Л):	34	34		
Практические занятия (ПЗ)	X	X		
Лабораторные работы (ЛР)	X	X		
Семинарские занятия (СЗ)	X	X		
Групповые консультации	X	X		
Индивидуальные консультации	X	X		
Промежуточная аттестация	X	X		
Самостоятельная работа обучающегося ² :	108,0,5	108,0,5		
- выполнение курсовой работы (КР)	X	X		
- изучение учебного материала, публикаций	100	100		
- подготовка к рубежному контролю по теме/разделу	8,5	8,5		
- другие формы самостоятельной работы				
Вид промежуточной аттестации (зачет, зачет с оценкой, экзамен)	Зачет с оценкой	Зачет с оценкой		

Промежуточная аттестация — 0,25 часа Индивидуальные консультации — 0,7 часа Групповые консультации — 1,0

час

.

 $^{^2}$ Приводятся формы самостоятельной работы обучающегося, реализуемые в рамках изучения дисциплины.

3.2. Содержание и трудоемкость разделов дисциплины/модуля

Таблица 3

Код занятия	Наименование разделов и тем и их содержание	Вид учебной работы, занятий, контроля ³	Сем	Часы в электронн ой форме ⁴	Всего (час.)	Литература ⁵	Код (ы) результата(ов) обучения ⁶
	Раздел 1.Диапазон СВЧ и его особенности						
1.1.	Тема занятия Введение Место диапазона СВЧ в спектре ЭМК Особенности диапазона СВЧ	Лекция	5	2	2	<i>N</i> º1, <i>N</i> º2	OP 1.2.1., OP-1.2.2
1.2.	Линия передачи СВЧ.КСВН КБВН	Лекция	5	2	2	№1, №2	OP 1.2.1. OP-1.2.2
1.3.	СРС-изучение доп.литературы ⁷	CPC	5		8	№ 3, № 6.	OP 1.2.1. OP-1.2.2
	Текущий контроль успеваемости ⁸ - контрольные вопросы.в MOODLE		5				
	Раздел 2. Волноводы прямоугольного и круглого сечения		5				
2.1.	Уравнения Максвелла для металлических волноводов	Лекция	5	2	2	№2,, №3, №4	OP 1.2.1. OP-1.2.2

³ Столбец заполняется в соответствии с таблицей 3.

⁴ Часы указываются в случае использования электронного формата (MOODLe, MOOC).

⁵ Литература (заполняется при необходимости из общего перечня литературы по дисциплине).

⁶ Коды результатов обучения указываются в соответствии с таблицей 1.

⁷ Форма СРС указывается в соответствии с п. 3.1.

⁸ Текущий контроль успеваемости (периодичность, формат/вид/метод оценивания) определяется исходя из целей, задач и планируемых результатов обучения.

2.2.	Волноводы прямоугольного сечения	Лекшия	5	2	2	<u>№2, №3</u>	OP 1.2.1. OP-1,2.2
2.2.	Е и Н типы волн в	лекция		2		J122, J123	OP 2.2.1 OP 2.2.2.
	прямоугольных волноводах						01 2.2.1 01 2.2.2.
2.3	Длина волны в волноводе. Дисперсия.	Лекция	5	2	2	<u>№2, №3</u>	OP-1.2.1 OP-1.2.2
2.3	Спектр видов колебаний в	лекция		2	2	J122, J123	OP 2.2.2.
	прямоугольном волноводе						01 2.2.2.
2.4.	Фазовая и групповая скорость	Лекция	5	2	2	<u>№2, №3</u>	OP-1.2.1 OP-1.2.2
2.4.	1	лекция	3	2		Nº2, J\23	OF-1.2.1 OF-1.2.2
	волн в прямоугольном волноводе						
	Токи в стенках волновода.						
2.5	Мощность передаваемая по волноводу	п	-	2		N. 2 N. 2	00121 00221
2.5	Волноводы круглого сечения. Е и Н	Лекция	5	2	2	№ 2, № 3	OP 1.2.1. OP 2.2.1
	типы волн в круглом волноводе						OP-1.2.2 OP 2.2.2.
	Коаксиальные волноводы.	Лекция	5	2	2	№ 2, № 3	OP 1.2.1. OP-1.2.2
2.6	Основной и высшие типы волн в						OP 2.2.1
	коаксиальном волноводе. Полосковый						
	волновод						
2.7	СРС-изучение доп.литературы	CPC	5		22	<i>№</i> 5, <i>№</i> 6, <i>№</i> 7, <i>№</i> 8	OP 1.2.1. OP-1.2.2
							OP 2.2.2. OP 2.2.3.
	Текущий контроль успеваемости ⁹ -						
	Тест.в MOODLE						
	Раздел 3. Элементы					<i>№</i> 1, <i>№</i> 4	
	волноводного тракта.						
3.1	Направленный ответвитель.	Лекция	5	2	2	№1, №4	OP 1.2.1. OP-1.2.2
	Аттенюатор. Фазовращатель						OP 2.2.1
3.2	Делители мощности Е и Н Т-мосты,	Лекция	5	2	2	№1, №4	OP 1.2.1. OP-1.2.2
	двойной Т-мост. Гибридное кольцо						OP 2.2.1
	_						
	Замедляющие структуры.		5		2	№1, №4	OP 1.2.1. OP-1.2.2
3.3	замедзинещие структуры.						
3.3	Диэлектрический волновод. Спираль.						OP 2.2.1

⁹ Текущий контроль успеваемости (периодичность, формат/вид/метод оценивания) определяется исходя из целей, задач и планируемых результатов обучения.

3.4.	Невзаимные элементы СВЧ (Y - циркулятор, вентиль)	Лекция	5		2	№1, №4	OP 1.2.1. OP-1.2.2 OP 2.2.1
3/5	СРС-изучение доп.литературы		5		24	№7, №8 ,№11, №12	OP 1.2.1. OP-1.2.2 OP 2.2.1 OP 2.2.3.
	Текущий контроль успеваемости ¹⁰ - контрольные вопросы.в MOODLE.						
	Раздел 4. Резонаторы		5				
4.1	Объемный резонатор. Типы колебаний, распределения полей.	Лекция	5	4	4	<i>№</i> 2, <i>№</i> 4	OP 1.2.1. OP-1.2.2 OP 2.2.1
4.2	Спектр резонансных частот. Добротность. Коэффициенты связи.	Лекция	5	4	2	№2, №4	OP 1.2.1. OP-1.2.2 OP 2.2.1 OP 2.2.2.
4/3	СРС-изучение доп.литературы	CPC	5		26	№9, №10, №11, №12	OP 1.2.1. OP-1.2.2 OP 2.2.3.
	Текущий контроль успеваемости ¹¹ - контрольные вопросыв MOODLE						
	Раздел 5. Устройства СВЧ и их применения		5				
51	СВЧ устройства в измерительной, диагностической, медицинской и военной технике.	Лекция	5		4	<i>№</i> 1, <i>№</i> 2, <i>№</i> 3	OP 1.2.1. OP-1.2.2 OP 2.2.1
5/2	СРС-изучение доп.литературы	CPC	5		20	№5, №6, №12	OP 1.2.1. OP-1.2.2 OP 2.2.1 OP 2.2.2. OP 2.2.3.
	Промежуточная аттестация		5				

¹⁰ Текущий контроль успеваемости (периодичность, формат/вид/метод оценивания) определяется исходя из целей, задач и планируемых результатов обучения. ¹¹ Текущий контроль успеваемости (периодичность, формат/вид/метод оценивания) определяется исходя из целей, задач и планируемых результатов обучения.

4. Образовательные технологии, учебно-методическое и информационное обеспечение для освоения дисциплины/модуля

Образовательные технологии

В процессе обучения используются следующие образовательные технологии:

- мультимедиа-средства для демонстрации разделов курса;
- к обсуждению отдельных разделов привлекаются научные сотрудники лабораторий ТГУ и других организации специалисты в области разработки и применения устройств СВЧ;
- в рамках лекционных занятий проводится знакомство с современным оборудованием, использующим рассматриваемые в лекциях СВЧ узлы.

Основной формой обучения является курс лекционных занятий. Лекционные занятия закрепляются самостоятельной работой студентов, которая включает изучение учебного материала в системе Moodle, основной и дополнительной литературы, а также выполнением контрольных заданий.

В основу организации самостоятельной работы положены: изучение рекомендуемой основной и дополнительной учебной литературы; поиски и анализ информационных ресурсов по изучаемой теме в сети Интернет, рассмотрение примеров решений изложенных в учебниках типовых задач и вариантов ответов, подготовке к промежуточному и итоговому тестированию

Промежуточная аттестация по дисциплине заключается в проведении тестирования и анализа выполнения заданий по лекционному материалу. Для аттестации используются результаты самостоятельной работы, промежуточного и итогового тестирования.

4.1. Литература и учебно-методическое обеспечение

Основная учебная литература

- 1. Электродинамика и распространение радиоволн: учебник/ И.П.Соловьянова, Ю.Е. Мительман, С.Н.Шабунин; под общ. Ред. Мительман, С. Н. Шабунин; под общ. ред. доц., канд. техн. наук И. П. Соловьяновой и доц., канд. техн. наук Ю. Е. Мительмана; Мин-во науки и высш. образования РФ. Екатеринбург: Изд-во Урал. ун-та, 2020 412 с.
- $\underline{https://elar.urfu.ru/bitstream/10995/94001/1/978-5-7996-3137-6_2020.pdf}$
- 2. Фальковский О.И. Техническая электродинамика. СПб: Изд-во Лань, 2016. 429 с.
- 3. Электродинамика и распространение радиоволн: учебное пособие Муромцев Д.Ю., Зырянов Ю.Т, Федюнин П.А. и др. СПб: Лань, 2014, 448 с.
- 4. Электродинамика : учебное пособие : [для студентов физических

факультетов вузов] . - Москва : ИНФРА-М, 2014. -157 с.

Дополнительная литература

- 5. Г.Д.Богомолов. Прикладная электродинамика . 2014 https://kapitza.ras.ru/chair/books/bogom.pdf
- 6. .В.А.Бережной, В.Н.Курдюмов. Лекции по высокочастотной электродинамике. 2013
- M: ИЯИ РАН. 405 с. https://arxiv.org/pdf/1310.0994.pdf
- 7. Баскаков С.И. Электродинамика и распространение радиоволн. М.: Лань, 2009. 432 с.
- 8. Неганов В.А., Осипов О.В., Раевский С.Б., Яровой Г.П. Электродинамика и распространение радиоволн. М.: Радио и связь, 2005. 648 с.
- 9. Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988. –440 с.
- 10 .Завьялов А.С. Электродинамика сверхвысоких частот: учебное пособие. Том. гос. ун-т. Томск: [б. и.], 2007. 129 с
- 11 . Григорьев А.Д. Электродинамика и техника СВЧ. М.: Высшая школа, 1990.-334 с.
- 12. Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн –М.:ЛИБРОКОМ, 2014.- 542 с.

4.2. Базы данных и информационно-справочные системы, в том числе зарубежные

- -электронный учебный курс на базе виртуальной обучающей среды LMS (сайт http://rff-lms.tsu.ru);
 - научно-образовательные ресурсы сети Интернет.

4.3. Перечень лицензионного и программного обеспечения

- 1. Microsoft Visual Studio Community 2019 (свободно распространяемая версия).
- 2. Электронные учебные курсы на базе виртуальной обучающей среды LMS, системные пакеты PascalABCNet, Matlab, Octave, MatCad; пакет MS Office.
- 3. научно-образовательные ресурсы сети Интернет.

4.4. Оборудование и технические средства обучения

Для проведения семинарских занятий и работы с ресурсами сети Интернет на радиофизическом факультете имеются компьютерные классы с рабочими местами, имеющими необходимое программное обеспечение и выход в Интернет.

Ознакомление обучающихся с элементами СВЧ базы, измерительными устройствами СВЧ обеспечено наличием на кафедре радиоэлектроники учебной лаборатории где имеются приборы и установки для измерения СВЧ характеристик, а также компьютерные рабочие места для обработки результатов.

5. Методические указания обучающимся по освоению дисциплины/модуля

Основой обучения является курс лекций, читаемый преподавателем. Для самостоятельной работы и дополнительного расширения круга знаний желательно использовать литературу, приведенную в разделе 4.1, а также информационные системы, приведенные в разделе 4.2.

Методические указания включают программу курса, контрольные вопросы по каждому разделу в LMS.TSU и для самостоятельной работы, а также предлагаемые ежегодно новые темы для самостоятельных исследований

6. Преподавательский состав, реализующий дисциплину

-профессор, д.т.н. Дунаевский Григорий Ефимович

7. Язык преподавания

Русский