Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Факультет инновационных технологий

УТВЕРЖДЕНО: Декан С. В. Шидловский

Оценочные материалы по дисциплине

Методы диагностики материалов и процессов

по направлению подготовки / специальности

27.03.05 Инноватика

Направленность (профиль) подготовки/ специализация: **Управление инновациями в наукоемких технологиях**

Форма обучения **Очная**

Квалификация **инженер-аналитик/инженер-исследователь**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.В. Вусович

Председатель УМК О.В. Вусович

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ПК 1 – Способен находить и проектировать технико-технологическое решение на основе «лучших практик»

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РОПК 1.1 Умеет систематизировать информацию, полученную в ходе НИР и ОКР, анализирует ее и сопоставляет с литературными данными («лучшие практики»)

2. Оценочные материалы текущего контроля и критерии оценивания

Текущий контроль проводится в течение семестра с целью определения уровня усвоения обучающимися знаний, формирования умений и навыков, своевременного выявления преподавателем недостатков в подготовке обучающихся и принятия необходимых мер по ее корректировке, а также для совершенствования методики обучения, организации учебной работы, и фиксируется в форме контрольной точки не менее одного раза в семестр.

2.1. Тест

Тестовые задания предусматривают закрепление теоретических знаний, полученных студентом во время занятий по данной дисциплине. Их назначение – углубить знания студентов по отдельным вопросам, систематизировать полученные знания, выявить умение проверять свои знания в работе с конкретными материалами. При подготовке к решению тестовых заданий рекомендуется повторить материалы по пройденным темам.

На выполнение теста отводится от 20 до 40 минут в зависимости от темы.

Банк вопросов тестов находиться в электронном курсе

URL: https://lms.tsu.ru/course/view.php?id=19794
Примеры вопросов теста
1. Что такое квантовая точка?
□ Квантовая точка представляет собой нанообъект одного материала находящийся
на матрице из другого материала;
□ Элементарная структура квантового излучения;
□ Наноразмерный разрыв в электромагнитном излучении;
□ Квант, находящийся в электромагнитном поле;
2. Как меняется вклад межфазной области в общие свойства объекта при
уменьшении его размера?
□ При уменьшении размера объекта вклад межфазной области в общие свойства
объекта уменьшается;
□ При уменьшении размера объекта вклад межфазной области в общие свойства
объекта увеличивается;
□ При уменьшении размера объекта вклад межфазной области в общие свойства
объекта проходит через максимум при 100 нм;
□ При уменьшении размера объекта вклад межфазной области в общие свойства
объекта проходит через минимум при 100 нм.
3. Что такое размерный эффект в технологии наноматериалов?
□ Изменение свойств нанообъектов в зависимости от размера элементов их
структуры;
□ Изменение размера нанообъектов в зависимости от внешних условий;
□ Изменение свойств нанообъектов в зависимости от внешних условий;

□ Изменение размера нанообъектов в зависимости от состава.

Критерии оценивания теста

Оценка	Характеристика ответа
Зачтено	от 80 % правильных ответов
Не зачтено	менее 80 % правильных ответов

3.2. Практические работы

Главная цель практической или работы заключается в выработке у студента

практических умений, связанных с решением определенных задач в области наноматериалов и нанотехнологий, с обобщением и интерпретацией тех или иных исследовательских материалов. Кроме того, ожидается, что результаты практических занятий будут впоследствии использоваться учащимся для освоения новых тем.

При подготовке к выполнению практического задания необходимо повторить лекции и методическое указание по теме выполняемого задания.

При выполнении задания необходимо внимательно изучить предлагаемый материал, получить от преподавателя на занятии раздаточный материал и в соответствии с заданием, изложенном в методическом указании по теме практической работы, выполнить работу и написав отчет. В конце занятия необходимо сдать отчет преподавателю в виде собеседования по теме работы.

Отчет о работе оформляется в тетради и должен содержать название, цель работы, графики, подробный анализ полученных результатов с изложением выводов.

Темы практических занятий	
1. Классификация наноматериалов и нанотехнологий	
2. Оценка доли поверхностных атомов в наночастицах	
3. Изучение свойств наночастиц	
4. Изучение структуры углеродных наноматериалов	
5. Изучение структуры консолидированных наноматериалов	
6. Изучение свойств смазочно-охлаждающих жидкостей, модифицированных	
углеродными микро- и наночастицами	
7. Нанотехнологии для космоса	
8. Нормативные документы, регламентирующие безопасность наноматериалов	
при	
применении и на производстве	

Оценка	Характеристика ответа	
Зачтено	Студент знает и понимает конечную цель и задачи работы.	
	Работа должна быть выполнена полностью, правильно оформлена в	
	соответствии с заданием. При необходимости должна содержать	
	правильно оформленную графическую часть.	
Не зачтено	Работа выполнена не полностью или неправильно. Студент не понимает	
	цель и задачи работы, допускает грубые ошибки в написании и	
	оформлении отчета, испытывает затруднения в формулировке	
	собственных суждений, неспособен ответить на дополнительные вопросы	

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Критерии оценивания зачета представлены в разделе 10 Рабочей программы дисциплины «Методы диагностики материалов и процессов».

Зачет проводится в устно-письменной форме с ответами на теоретические вопросы и решением задачи.

Теоретические вопросы для зачета

- 1. Какие объекты являются предметом исследования науки, называемой «Нанотехнология»
- 2. Приведите одно из наиболее употребляемых определений нанообъекта.
- 3. Что такое волна де Бройля?
- 4. Почему считается, что волна де Бройля определяет геометрические параметры нанообъектов?
 - 5. Что такое критический размер нанообъекта?
- 6. Почему количество поверхностных атомов является одним из критериев отличающих нанообъекты от других объектов исследования?
 - 7. Что называют наноматериалами?
 - 8. Что включает в себя понятие технология?
 - 9. Что такое нанотехнология? Определение.
- 10. Чем объясняется химическая и каталитическая активность нанообъектов и наноструктурированных материалов?
 - 13. Какие классические размерные эффекты наблюдаются в нанообъектах?
 - 14. В чем причина изменения электрофизических параметров наноматериалов?
 - 15. На чем базируются принципы самоорганизации наноструктур?
 - 16. Как силы отталкивания и притяжения зависят от расстояния между атомами?
- 17. В каких материалах при переходе к наноразмерам становятся существенными квантовые ограничения поведения элементарных частиц?
 - 18. Как изменяется спектр энергий электрона при понижении размерности объекта?
 - 19. Перечислите физические причины специфики поведения нанообъектов.
 - 20. Что лежит в основе общепринятой классификации нанообъектов?
 - 21. Дайте определение 0-D нанообъекта. Примеры.
 - 22. Дайте определение 1-D нанообъекта. Примеры.
 - 23. Дайте определение 2-D нанообъекта. Примеры.
 - 24. Классификация наноматериалов.
 - 25. Какие две технологические парадигмы имеют место в нанотехнологии?
- 26. Какое главное ограничение на использование технологической парадигмы «снизу -вверх»?
 - 27. Какие два класса процессов можно выделить при изготовлении наночастиц?
 - 28. Что такое диспергирование твердых тел?
 - 29. В чем особенности диспергирования при изготовлении 0D нанообъектов?
- 30. Приведите примеры устройств, используемых для механического диспергирования твердых тел.
 - 31. Что такое квантово-размерный эффект?
 - 32. Что такое туннельный эффект?
 - 33. Что такое вискеры и к какой группе наноматериалов их относят?
 - 34. Отличие квантовых точек от кластеров
 - 35. Области применения кластеров
 - 36. Основные свойства кластеров
 - 37. Этапы получения консолидированных материалов из нанопорошков
 - 38. Какие две группы процессов используемых для нанесения покрытий вы знаете?
 - 39. Какие цели преследует нанесение покрытий.
 - 40. Какие свойства наночастиц подобны свойствам отдельных атомов?
 - 41. Какие две группы процессов используемых для нанесения покрытий вы знаете?

- 42. Что такое гетероструктуры?
- 43. В чем достоинства методов осаждения из паровой фазы?
- 44. Что такое золь-гель метод?
- 45. Что такое эпитаксия?
- 46. Какие разновидности эпитаксиальных процессов вы знаете?
- 48. Жидкофазная эпитаксия. Достоинства недостатки.
- 49. Газофазная эпитаксия. Достоинства недостатки.
- 50. Молекулярно-лучевая (пучковая) эпитаксия. Достоинства недостатки.
- 51. Что такое фуллерен?
- 52. Что такое фуллерит?
- 53. Что такое графен?
- 54. Где могут быть использованы углеродные наноматериалы?
- 55. Технологии получения наноструктуры в 3D материалах
- 56. В чём суть метода газофазового осаждения?
- 57. На чём основано действие самоочищающихся покрытий?
- 58. В каких случаях равноканальное угловое прессование?
- 59. Основные способы получения наноструктуры в массивных металлических материалах

Задачи для зачета:

- 1. Строение крыла представителей отряда чешуекрылых натолкнуло несколько групп нанотехнологов на создание наноструктур, которые могут в будущем существенно модернизировать уже существующие на данный момент технологии по созданию солнечных батарей.
- Крылья какого насекомого послужили примером для создания подобных наноструктур: стрекозы; б) мухи; в) бабочки; г) осы; д) богомола; е) блохи (1 балл)
- Как вы думаете, какие преимущества получат солнечные батареи разработанные на основе нанотехнологий? (2 балла)
 - Как вы думаете, зачем подобные наноструктуры этим насекомым? (4 балла)
- Какие приборы можно модернизировать, если использовать при их изготовлении наноструктуры схожие с теми, которые есть у насекомых. (1 балл)

Температура плавления наночастиц

- 2. На основе анализа представленных на рис. 1 и 2 графиков зависимостей температуры плавления Тт наночастиц алюминия и золота от радиуса R требуется:
 - 1) указать Тт частиц алюминия с радиусами 5 нм и 150 Å;
- 2) указать радиус частиц алюминия, выше которого Tm практически не изменяется и становится такой же, как у образцов алюминия обычного размера;
- 3) определить, на сколько градусов меньше Tm у наночастицы алюминия с радиусом 3 нм, чем у образца алюминия обычного размера;
- 4) определить, на сколько процентов меньше Tm у наночастицы алюминия с радиусом 5 нм, чем с радиусом 125 Å;
- 5) определить, на сколько градусов меньше Tm у образца алюминия обычного размера, чем у образца золота обычного размера;
- 6) определить, во сколько раз меньше Tm у наночастицы алюминия с радиусом 50 Å, чем у наночастицы золота с радиусом 4 нм;
- 7) указать радиусы наночастиц алюминия и золота, которым соответствует значение Tm = 600 оС, и определить, какой из них больше другого и во сколько раз.

Информация о разработчиках

Малеткина Татьяна Юрьевна, к.ф-м.н., доцент ТГУ